

Windows Powershell for
Developers

Douglas Finke

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Windows Powershell for Developers
by Douglas Finke

Copyright © 2012 Douglas Finke. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Iris Febres
Proofreader: Iris Febres

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-07-03 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449322700 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Windows PowerShell for Developers, the image of the three-banded armadillo, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32270-0

[LSI]

1341351046

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449322700

To my daughter, Elizabeth, with love

Table of Contents

Preface . xi

1. Introduction . 1
This Is Just the Beginning 2
Why Use PowerShell 3
There’s a New Game in Town 3
An Underutilized Development Tool 4

2. Getting Started . 5
Installing PowerShell 5

Checking the PowerShell Version 5
Interactivity, the Key to PowerShell 6
Running a PowerShell Script 7

Changing the Execution Policy from the Command Line 7
PowerShell ISE 9
Other PowerShell Editors 10
PowerShell and Visual Studio 11
The PowerShell Community 12
The Future of PowerShell on Windows 8 12
Summary 13

3. The Dime Tour . 15
The Object Pipeline: The Game Changer 15
Automation References 16
Semicolons 17
Return Statements 17
Datatypes 18
Exception Handling 18

Break 18
Continue 19
Try/Catch/Finally 19

v

Quoting Rules 19
PowerShell Subexpressions in Strings 20
Here-Strings 20

Great Code Generation Techniques 20
C# Code 21

Closures, Functions, and Lambdas 21
Scriptblocks, Dynamic Languages, and Design Patterns 22

Arrays 23
Creating an Empty Array 23
Adding an Array Item 23
Retrieving an Element from an Array 23
Array Slicing 24
Finding Array Elements 24
Reversing an Array 24
Assigning Values to Multiple Variables in an Array 24

Parentheses and Commas 25
Hash Tables 25

Creating an Empty Hash Table 25
Adding a Hash Table Item 26
Initializing a Hash Table with Items 26
Concatenating Hash Tables 26

Get-Member 26
Filtering with Get-Member 27
Using Get-Member with Collections 28

Inject a GUI into the PowerShell Command Line 29
New-Object 29

Launching Internet Explorer 30
Creating a New PowerShell Object 30
Using the .NET Framework 31

Add-Member 31
Add-Type 31

Compiling C# on the Fly 31
Newing Up the Class 32
Calling the Add Method on MyMathClass 32
Wait, I Don’t Have the Source 32

“What Does % Do?” and Other Aliases 33
Modules 33
Summary 34

4. Accelerating Delivery . 37
Scanning for const Definitions 37

Reading a Single C# File 38
Reading C# Files in a Directory 39

vi | Table of Contents

Working with Template Engines 40
The Engine 40
A Single Variable 41
Multiple Variables 42
Multiple Templates 42
Complex Logic 43
UML Style Syntax 44
Reading XML 45
Bonus Round 45

Generating PowerShell Functions from C# Methods 46
Get Parameters 47
Pulling It All Together 48

Calling PowerShell Functions from C# 49
Overriding C# Methods with PowerShell Functions 50

The Breakdown 51
Looking for PowerShell Functions 51
Extracting Metadata and Generating C# 52
The PowerShell Module 53
Testing It All 54

Summary 55

5. Add PowerShell to Your GUI . 57
Embedding PowerShell in your C# Application 57
Beaver Music Application 60

PowerShell Console 60
Foundational Functions 62
Managing Applications Better with PowerShell 65
Importing Albums from the Web 66
Interacting with MEF 72
Implementing Performance Counters 73
Wiring a Textbox to Execute PowerShell Code 75
Working in the PreviewKeyDown 77
Running Script and Debugging the C# 79

Getting the PowerShell Console in Your App 79
PSConfig.Profile 80
PSConfig.AddVariable 80
The PowerShell Console Code 80

Summary 83

6. PowerShell and the Internet . 85
Net.WebClient 85
Wrapping Code in a PowerShell Function 86

Reading CSV-Formatted Data from the Web 86

Table of Contents | vii

Reading XML-Formatted Data from the Web 87
The Structure of XML Data 87
US Government Data Sources 88

Invoke-RestMethod 88
Detecting XML 88
Detecting JSON 89

PowerShell and The New York Times Semantic API 89
Reading The New York Times, part 1 90
Reading The New York Times, part 2 90

New-WebServiceProxy 91
Stock WebService 91
Dig a Little Deeper 92

Invoke-WebRequest 93
PowerShell and Google 94
PowerShell and Bing 95
PowerShell and the Twitter API 96

Summary 97

7. Building GUI Applications in PowerShell . 99
Why a Chapter About GUIs? 99

Answer: Two Lines of Code 100
PowerShell and WinForms 100
PowerShell, ShowUI, and the Twitter API 101
A Twitter GUI Application 103

The Code 103
ShowUI Video Player 105
Summary 106

8. DLLs, Types, Properties, Methods, and Microsoft Roslyn . 109
Sending Text to the Clipboard 109
Transcoding C# to PowerShell 111

First, the C# 111
Intermediate PowerShell 113
Results 113
Converting JSON to PowerShell 114

Microsoft’s Roslyn 114
Microsoft Roslyn and PowerShell 115

Using PowerShell to Display Visual Studio Detail 116
Roslyn’s Document Methods 118
PowerShell Roslyn Class Viewer 121

How It Works at a High Level 122
Summary 123

viii | Table of Contents

9. Writing Little Languages in PowerShell . 125
Adding a New Construct to PowerShell 126
PowerShell: A Better XML 127

But Wait—There’s More 128
Putting It All Together 130

The Little Language in Action 130
Is It Worth Creating Your Own Little Language? 131

Graphviz 132
Graphviz “Hello World” 132
Hello World Visual 132
A PowerShell DSL as a façade to GraphViz 133

Mix and Match PowerShell and GraphViz 134
Kick It Up a Notch: New-Graph Is an Internal DSL 135
Graphing the Companies from Get-Process 135

Summary 136

10. PowerShell, COM, and More . 139
Opening a File in Excel Using Invoke-Item 139

Working Invoke-Item into a PowerShell Script 140
Calling an Excel Function 141

Creating an Excel COM Instance 141
Discovering Available Excel Functions 143

Calling More Excel Functions 144
Automating Excel from PowerShell 144

Making Excel Visible 145
Creating a Workbook and Worksheets 146
Putting the Date in a Cell in an Excel Worksheet from PowerShell 146
Setting Up Pivot Tables in Excel 147
Building an Excel Pivot Table in PowerShell 148

Discovering Other COM Applications to Automate 149
Automating Internet Explorer as a COM Application 151

Summary 151

11. PowerShell Version 3 . 153
PowerShell Workflows 153

PowerShell Script-Based Workflow 154
Running the Workflow 155
Running the Workflow on Other Boxes 155
Discovering More About Your Workflow 155
Visual Studio Workflow 156

Using PowerShell with Web Data: Converting to and from JSON 159
Converting JSON to PowerShell Objects and Back Again 160
What If a Web/REST Service Returns JSON? 161

Table of Contents | ix

Creating an Instance of a Microsoft .NET Framework Object 162
Get-Content –Tail 163
ISE v3 163
Out-GridView and the -PassThru Parameter 164
Scheduling Jobs 165
Invoke-WebRequest and Invoke-RestMethod 167
PowerShell v3 Items That Are a Must-See 168

Show-Command 168
Less Typing for ForEach and Where 171
Execute PowerShell Commands from the Web 171
Windows PowerShell Management ODATA IIS Extensions 172

Summary 172

A. Productive PowerShell . 175

B. Running PowerShell with the .NET 4.0 Runtime . 189

x | Table of Contents

Preface

Windows PowerShell is a successful, compelling, and integrated tool that all good .NET
developers, IT pros, and anyone working with Windows should have in their toolboxes.

It can be used for making unit tests more powerful, scripting tasks such as reading XML
or data imports, providing integration points in your .NET applications for end users
to customize or extend using their own scripts, and defining little languages to express
readable and concise business rules.

PowerShell simplifies your life, opening doors not previously accessible to you, by
providing a .NET-based scripting language filled with useful features and application
programming interfaces (APIs) for all the common programming tasks you take on daily.

You’ll quickly learn the basic concepts using the interactive command line, and you’ll
move rapidly to creating scripts and embedding PowerShell into your existing .NET
applications.

Audience
This book is for anyone who wants to know more about PowerShell. If you’re serious
about PowerShell, it’s a must read. This book walks you through what is possible with
PowerShell—helping you answer questions such as “can this be done better, faster, or
simpler, or can I make it repeatable?”—and planting the seeds for you to creatively
apply this new distributed automation platform on your own.

Assumptions This Book Makes
This book is not a beginner’s guide to PowerShell. If you are an experienced developer
or IT pro, this book gives you insight into what PowerShell can do.

The examples in this book are runnable out of the box. You can study how and what
the scripts do—this is one of the tried-and-true ways of learning a new paradigm. While
some examples include C# .NET, it is not required that you understand C#.

xi

The examples are self-contained. Run them; see what they do. Then you can pull them
apart, tweak them, and incorporate them into your PowerShell and .NET solutions.

Contents of This Book
Chapter 1 gives an overview of the platform and answers the question “Why Power-
Shell?”

Chapter 2 steps you through getting PowerShell prepped for running.

Chapter 3 offers a walkthrough of things you probably didn’t even know the PowerShell
platform could do.

Chapter 4 covers writing a template engine and using the new PowerShell v3 abstract
syntax tree interface to extract information from PowerShell scripts.

Chapter 5 kicks it up a notch and shows you how easy it is to provide scripting abilities
for your C# (WPF) apps by embedding PowerShell into them.

Chapter 6 demonstrates PowerShell’s excellent capabilities for working with the In-
ternet. JSON, XML, HTTP, Twitter? No problem.

Chapter 7 demonstrates how PowerShell is based on .NET. Want to build GUIs with
less code? This is the chapter for you.

Chapter 8 further explores PowerShell’s relationship to .NET and shows you how to
leverage this seamless integration with other Microsoft frameworks.

Chapter 9 covers one of my favorite topics—building “little languages”—and shows
how PowerShell makes this easy. Whether you prefer domain-specific languages (DSL)
or domain-specific vocabularies (DSV), you’ll want to check out what PowerShell has
to offer.

Chapter 10 shows you how to really leverage applications like Microsoft Excel and by
extension, Microsoft COM (Component Object Model) applications.

Chapter 11 is an excursion through some of the new and exciting features of PowerShell
v3, set to ship with Windows 8 and Windows Server 2012, and available in beta for
Windows 7.

Appendix A is all about programmer productivity. This is a PowerShell sweet spot, and
this chapter shows you how to get the most out of the platform.

Appendix B shows you how to enable PowerShell v2 to load and work with .NET 4.0
DLLs. This is the default mode in PowerShell v3.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PowerShell for Developers by Douglas
Finke (O’Reilly). Copyright 2012 Douglas Finke, 978-1-4493-2270-0.”

Preface | xiii

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Available for Download
The code examples in the following chapters are available for download from GitHub
at https://github.com/dfinke/powershell-for-developers.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449322700

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over
7,500 technology and creative reference books and videos to find the answers you need
quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

xiv | Preface

mailto:permissions@oreilly.com
https://github.com/dfinke/powershell-for-developers
http://oreilly.com/catalog/9781449322700
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
Writing a book is an interesting journey. Now that it’s completed, looking back over
the last several months I’m amazed at how lucky I’ve been to come in contact with so
many terrific people.

I’d like to thank my editor at O’Reilly, Rachel Roumeliotis, who was absolutely amazing
to work with.

Thank you to Elizabeth, my daughter, who has just finished another year at university
and continues to be my inspiration.

I was fortunate to have three great guys as reviewers for my book. They spent countless
hours providing feedback and examples, researching specific content, offering lots of
encouragement, and engaging with me in great discussions about PowerShell.

A special thanks to Daniel Moore. His passion for computing has earned him the
nickname Beaver (as in “eager beaver”). He jumps in deep-end first and starts building
dams like nobody’s business. He’s responsible for the WPF GUI in Chapter 5, a.k.a.
the “Beaver Music application.” He helped save me tons of time prepping the code for
NuGet and the other examples for GitHub. Thanks, Daniel!

Thank you very much, Aleksandar Nikolic´ and Steve Murawski, fellow PowerShell
MVPs and cofounders of PowerShell Magazine (http://www.powershellmagazine.com/).

Aleksandar’s incredible attention to detail was a significant asset in helping to finalize
the book. He has a passion for PowerShell and is extremely generous with the time that
he spends with the PowerShell community. Catch him at the next PowerShell Deep
Dive.

Steve’s depth of knowledge on PowerShell let him plow through these chapters and
provide great feedback throughout the process.

When Steve signed on to review the book, his family was about to increase by one. He
reviewed the chapters, did speaking gigs (including PowerShell Deep Dive), went to his
day job, and took care of a newborn. Makes me tired just writing about it.

Gentlemen, it was an honor and privilege working with you.

And Now, the Small Village of Folks Who Helped, Inspired, and Supported
Me
Allyson Chisholm—you have my heart.

Sal Mangano—fellow author, how you wrote a 1,000-page book is beyond me.

Preface | xv

http://my.safaribooksonline.com
http://www.powershellmagazine.com/

Thank you to this gang, a group of smart, supportive people whom I continue to learn
from: Jeffrey Snover, James Brundage, Bruce Payette, Lee Holmes, Jason Shirk, Ed
Wilson, Davin Tanabe, Jason Dolinger, Ravikanth Chaganti, Shay Levy, Ajay Kalras,
Joel Bennett, Oisín Grehan, Keith Hill, Karl Prosser, Will Steele, Justin Rich, Lance
Arlaus, Peter Coates, Ronald Lindtag, Sivabalan Muthukumar, Bailey Ling, Josh Ein-
stein, and last but not least, Caleb and Ebony Finke (the furry ones).

xvi | Preface

CHAPTER 1

Introduction

There is nothing more difficult to take in hand, more
perilous to conduct, or more uncertain in its success,

than to take the lead in the introduction of a new order
of things. Because the innovator has for enemies all

those who have done well under the old conditions and
lukewarm defenders in those who may do well under the

new.

—Nicolo Machiavelli, The Prince

PowerShell is the next-generation platform for distributed automation in the Microsoft
Windows environment. It provides significant benefits to developers, testers, power
users, and administrators. PowerShell works by leveraging the .NET Framework, and
provides significant benefits to developers, testers, power users, and administrators.
PowerShell leverages .NET to provide a powerful, consistent, intuitive, extensible, and
useful set of tools that drive down costs, and make it easier to program for and automate
Windows.

PowerShell was developed in 2002 under the code name Monad. In 2006, Microsoft
published Release Candidate 1 of the platform, simultaneously announcing its new
name, Windows PowerShell. Today PowerShell v3 is being delivered with Windows 8
and Windows Server 2012 and is available for Windows 7.

For a slightly reworked version of inventor Jeffrey Snover’s opening to
the Monad Manifesto whitepaper, which outlined the core ideas behind
what would eventually become PowerShell, see http://bit.ly/n68k1X.

New PowerShell developers can often create timesaving scripts after just a few hours
of learning. There are numerous accounts of people seeing huge reductions in time
spent solving problems using PowerShell, compared to traditional system program-
ming languages.

1

http://bit.ly/n68k1X

Another distinguishing feature of PowerShell is the fact that you can embed it into .NET
applications. Adding the PowerShell scripting engine to a Windows .NET application
allows you to provide a full-featured configuration and macro language to that
application. This is roughly analogous to adding Visual Basic for Applications (VBA)
to automate your work in Microsoft Excel.

This Is Just the Beginning
Once you learn PowerShell, you’ll be able to write scripts for any PowerShell-enabled
system. Windows Server 2012 is shipping with over 2,300 cmdlets (the basic unit of
PowerShell functionality), up from the 400 cmdlets that shipped with Windows 2008
R2.

On top of this, the number of PowerShell solutions provided from third parties and the
user community is growing by leaps and bounds. To get an idea of what PowerShell’s
future might hold, check out the sidebar “PowerShell Score Card, Ten Years On” to
see what it has accomplished already in its 10-year history.

PowerShell Score Card, Ten Years On
• PowerShell v3 will ship with both Windows 8 and Windows Server 2012. There

will be a version available for older Windows platforms.

• PowerShell v1 shipped in 2006.

• PowerShell v2 in 2009.

• WS2012 ships with over 2,300 cmdlets ready to use.

• PowerShell is integrated with SQL Server, IIS, Hyper-V, Microsoft Exchange,
SharePoint, Server Manager, and much more.

• PowerShell is a stop ship event, meaning no Microsoft server product ships if it does
not have a PowerShell interface.

• PowerShell supports running background jobs, running PowerShell scripts
remotely, workflows, and much more.

• PowerShell is integrated with third-party companies like VMWare, Intel, Cisco,
Citrix, Red Hat, and NetApp, among others.

• PowerShell has third-party tools like IDEs, Quest Software, Devfarm Software,
Software/FX, and many more.

• The PowerShell console window runs in the browser, a.k.a. PowerShell Web Ac-
cess (PWA).

• PowerShell has a thriving community with over 50 PowerShell MVPs (most
valuable professionals), bloggers, podcasts, script repositories, active forums, and
much more.

2 | Chapter 1: Introduction

Why Use PowerShell
I use PowerShell for a number of reasons. It makes me fast, it’s easy to use, and it’s
comprehensive. While PowerShell will never win a race with compiled .NET code, it’s
fast enough.

You can include .NET code directly in a PowerShell script and compile
it on the fly.

PowerShell is an astonishing glue language because it is rooted in .NET. The .NET
Framework, and the applications built on it, provides a set of powerful components
that PowerShell can connect together. This includes the .NET applications I am
building today. PowerShell pipes objects—not text—across the pipeline, enabling
programming scenarios, in few lines of code, that were not possible before.

PowerShell is easy to learn and extremely powerful. It has all the elements you’d expect
in a systems language—variables, loops, data structures, file I/O—and more. In
addition, it has complete access to the .NET Framework, and the ability to seamlessly
load .NET DLLs, instantiate objects, and retrieve metadata—either on your local box
or via PowerShell remoting.

Finally, PowerShell is fun, satisfying, and rewarding to use. Whether you’re using it to
automate a tedious task, to simplify an implementation complicated by traditional
means, or to create GUIs (WPF or WinForms based), PowerShell reduces both the
effort and time you spend to get to a completed program.

There’s a New Game in Town
Think of PowerShell as a new pinball game. We can continue to play the old one—we
know how to jiggle the machine just right so as not to tilt it, we understand all the ins
and outs, and we know the tricks to get extra plays—but this new game has great
potential.

But there is a wrinkle here: in order to get good at PowerShell, you need to experience
a short, frustrating period of being bad at it (i.e., the valley of the s-curve shown in
Figure 1-1). That means you’ll be looking things up, wrapping your head around new
ideas, and getting comfortable with the fact that when you jiggle PowerShell, sometimes
it’s going to tilt.

Usually you see declines in performance before significant improve-
ments.

There’s a New Game in Town | 3

An Underutilized Development Tool
Scripted versions of applications require less code, effort, and development time com-
pared to traditional approaches. The interesting discussion is not static languages ver-
sus dynamic languages, but rather when and where to use both for delivering solutions.
As John Ousterhout, creator of Tcl/Tk, put it:

Scripting languages are higher level than system programming languages in the sense that
a single statement does more work on average. A typical statement in a scripting language
executes hundreds or thousands of machine instructions, whereas a typical statement in
a system programming language executes about five machine instructions.

In summary, you owe it to yourself to try out this new pinball machine.

Figure 1-1. S-curve of innovation

4 | Chapter 1: Introduction

CHAPTER 2

Getting Started

Installing PowerShell
Installing PowerShell is as simple as installing any other application. Even better, it
comes preinstalled with Windows 7, Windows Server 2008 R2, Windows 8, and Win-
dows Server 2012. PowerShell is also available for previous versions of Windows XP,
2003, and Vista.

As noted, PowerShell v3 comes preinstalled with Windows 8 (and as I am writing this,
there is a RC release for Windows 7; you can download it at http://bit.ly/MdfXPo). New
cmdlets and language features are abundant in this more robust version, all designed
to make you more productive and lower the barrier of entry to using PowerShell.

If you are running an older Microsoft Windows OS, I encourage you to update that;
however, PowerShell v2 can run on these boxes. You can get v2 at http://bit.ly/
2QfKYT; make sure to download the right PowerShell for your OS and architecture.

While there is no PowerShell version for UNIX, Linux, or Mac,
Microsoft did license the PowerShell language under the Community
Promise (http://bit.ly/dLIHJ8). We’ll see if any developers pick up from
here and implement PowerShell on non-Windows boxes.

Checking the PowerShell Version
Depending on your Windows OS, you can navigate to PowerShell in many ways. First,
get to the command prompt and type:

PS C:\> $PSVersionTable

Name Value
---- -----
WSManStackVersion 3.0
PSCompatibleVersions {1.0, 2.0, 3.0}
SerializationVersion 1.1.0.1
BuildVersion 6.2.8158.0

5

http://bit.ly/MdfXPo
http://bit.ly/2QfKYT
http://bit.ly/2QfKYT
http://bit.ly/dLIHJ8

PSVersion 3.0
CLRVersion 4.0.30319.239
PSRemotingProtocolVersion 2.103

This gives you lots of good information about the PowerShell version running on your
box—including what version of .NET you are going against, noted as CLRVersion in
PowerShell. I’m running PowerShell v3 CTP3. I can run PowerShell in version 2 mode;
if possible, you should too.

Here is what I get when I look at the $PSVersionTable variable. Notice I have only two
compatible versions and am using .NET 2.0, CLRVersion. When PowerShell v2 was
delivered, only .NET 2.0 was released. PowerShell v3 works with .NET Framework 4.0.

PS C:\> $PSVersionTable

Name Value
---- -----
CLRVersion 2.0.50727.5448
BuildVersion 6.1.7601.17514
PSVersion 2.0
WSManStackVersion 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

Interactivity, the Key to PowerShell
The prompt is up, so let’s work the PowerShell REPL. A REPL (pronounced “repple”)
is a read-eval-print loop. This means that when you type some PowerShell command
and press Enter, those commands are read and evaluated, results (or errors) are printed,
and the console loops back and waits to do it again. Let’s try it:

PS C:\> 2 + 2 * 3
8
PS C:\>

So, PowerShell is just a big calculator? Not exactly. If you try that example in a DOS
prompt, what happens? You get an error. Here, the result is printed and we get the
prompt back, ready to complete your next request.

Now type in the "Hello World" quoted string. Press Enter, and you get back the same
thing you typed, without the quotes. PowerShell evaluated that for you, demonstrating
the E in REPL. Also, we didn’t have to explicitly specify that we wanted it to be printed;
PowerShell just “knew” to do that. These are great timesaving aspects of PowerShell—
not to mention, they cut down on keystrokes too.

PS C:\> "Hello World"
Hello World

Let’s tap into the .NET Framework now. Type in:

PS C:\> [System.Math]::Pow(2, 3)
8

6 | Chapter 2: Getting Started

Here, you’ve input the System.Math namespace and called the static method Pow(). Get
used to the syntax; you’ll be using it again and again. Square brackets ([]) around the
fully qualified type name and two colons (::) indicate that we’re calling the static
method. This is the syntax the PowerShell team has decided on.

Let’s create a variable, set it to a string, and then inspect its type. You may be familiar
with the GetType() method from C#.

PS C:\> $a = "Hello"
PS C:\> $a.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

Set the variable $a to the string "Hello"; then, by using the GetType() method, you can
verify that $a is a string. This is very handy when running or debugging PowerShell
scripts. You can slap a GetType() on a variable and find out exactly what type it is. Now,
how to run a PowerShell script?

Running a PowerShell Script
The execution policy is part of PowerShell’s security strategy. It determines whether
you can load configuration files (including your PowerShell profile) and run scripts,
and it determines which scripts, if any, must be digitally signed before they will run.

When you install PowerShell, the execution policy is set by default to Restricted. This
means that PowerShell will not load configuration files or run scripts. (If you’re new to
PowerShell, better safe than sorry.) Even though you are restricted from using scripts,
you can still run interactive commands.

Once you are more comfortable with using PowerShell and scripts written by others,
you can change the setting.

Changing the Execution Policy from the Command Line
You change the policy by using the Set-ExecutionPolicy cmdlet. You can find more
information about the Set-ExecutionPolicy cmdlet by typing the following:

Get-Help Set-ExecutionPolicy -Online

The cool part is, the –Online parameter will launch the browser and navigate to the
cmdlet web page.

RemoteSigned is good for you

There are a few options you can use with the –ExecutionPolicy parameter found on the
Set-ExecutionPolicy cmdlet. Many users set the execution policy to RemoteSigned,
which means that all scripts and configuration files downloaded from the Internet must

Running a PowerShell Script | 7

be signed by a trusted publisher. This “protects” you so that if you download a script
or get one in an email and try to run it, PowerShell will prompt you before letting you
continue. As you gain experience, you might choose the Unrestricted setting as follows,
but be aware that this comes with risks—you might launch scripts that could disable
or destroy information on your system.

PS C:\> Set-ExecutionPolicy Unrestricted

I run in Unrestricted mode, but I have been working with PowerShell for a few years.
I’m comfortable with the scripts I run because I know the authors and trust the sites
from which I have downloaded the scripts.

Here’s an example of why RemoteSigned is a good idea. Ed Wilson is a Microsoft em-
ployee, author of PowerShell books, a blogger for the “Hey, Scripting Guy!” blog
(http://bit.ly/b5qEhd), and the driving force behind the Windows PowerShell Scripting
Games (http://bit.ly/AoGHwO). Ed invited me to be a judge at the games. I downloaded
one of the entries for review and then ran it. The creator of the script had unintentionally
added some WMI code that disabled my Ethernet card. I ran the script and then spent
the next hour trying to figure out why I couldn’t connect to the Internet and how to
re-enable the card.

If had the RemoteSigned execution policy set, PowerShell would have warned me that I
was running a script I had downloaded, and I may have chosen not to run it. This is
especially handy if you end up with a folder with scripts from mixed sources.

Running scripts with the execution policy set to Restricted

Let’s run the test script again with the policy set to Restricted:

PS C:\> .\test.ps1
File C:\test.ps1 cannot be loaded because the execution
of scripts is disabled on this system. For more information,
see about_Execution_Policies at
http://go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ .\test.ps1
+ ˜˜˜˜˜˜˜˜˜˜
 + CategoryInfo : NotSpecified: (:) [], PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

You can set the execution policy to one of several settings so you don’t get this message
and can run the script. You’ll need to do a little research to figure out which setting is
most appropriate for you. You need to run the console as administrator in order to effect
the Set-ExecutionPolicy changes because it is a Registry setting.

Here are all the possible options for the -ExecutionPolicy parameter on the
Set-ExecutionPolicy cmdlet.

Restricted Does not load configuration files or run scripts. Restricted is the default execution policy.

8 | Chapter 2: Getting Started

http://bit.ly/b5qEhd
http://bit.ly/AoGHwO

AllSigned Requires that all scripts and configuration files be signed by a trusted publisher, including scripts that you
write on the local computer.

RemoteSigned Requires that all scripts and configuration files downloaded from the Internet be signed by a trusted
publisher.

Unrestricted Loads all configuration files and runs all scripts. If you run an unsigned script that was downloaded from
the Internet, you are prompted for permission before it runs.

Bypass Nothing is blocked, and there are no warnings or prompts.

Undefined Removes the currently assigned execution policy from the current scope. This parameter will not remove
an execution policy that is set in a Group Policy scope.

Now we’re set to run a script

Let’s try a simple script. The script test.ps1 contains the quoted string "Hello World".

PS C:\> Get-Content .\test.ps1
"Hello World"

PS C:\> .\test.ps1
Hello World

To run a PowerShell script, you’ll need to place “.\” before the name of the script to
indicate that it is in the current directory. Alternatively, you can provide the full path
to the script. In other words, scripts can be specified by full path or relative path.

Again, notice that there is no compilation step—you just execute and go. Even though
there is no compilation step and PowerShell is a dynamic language, it is based on .NET,
which proves to be beneficial in many ways.

PowerShell works within the .NET Framework and thus we can perform reflection at
the command line using Get-Member (see more on this cmdlet in Chapter 3), similar to
how we can use the GetType() method to see the underlying .NET object type we’re
manipulating. Reflection is the process by which you can observe (i.e., do type intro-
spection) and modify an object’s structure and behavior at runtime. Here, we just did
some observing.

PowerShell ISE
Windows PowerShell Integrated Scripting Environment (ISE; pronounced “ice”) is free
and available as soon as you install PowerShell, or immediately if you are using
Microsoft operating systems like Windows 7 or Windows 8 that have PowerShell al-
ready installed.

ISE is a graphical host application for PowerShell. It lets you run commands and write,
edit, run, test, and debug scripts in an environment that displays syntax in colors and
that supports Unicode.

PowerShell ISE | 9

ISE is designed for users at all levels of proficiency. Beginners will appreciate the syntax
colors and the context-sensitive Help. Multiline editing makes it easy to try the exam-
ples that you copy from the Help topics and from other sources. Advanced users will
appreciate the availability of multiple execution environments, the built-in debugger,
and the extensibility of the ISE object model.

Other PowerShell Editors
PowerShell does have a few free editors specifically tailored for use with it. There are a
number of other editors that support the editing of many different programming
languages, and typically the PowerShell community has stepped up to deliver exten-
sions for syntax highlighting, build tools, and more.

PowerGUI
PowerGUI is an extensible graphical administrative console for managing systems
based on PowerShell. These systems include Windows OS (XP, 2003, Vista), Ex-
change 2007, Operations Manager 2007, and other new systems from Microsoft.
The tool allows you to use PowerShell’s rich capabilities in a familiar and intuitive
GUI console.

PowerShell Analyzer
This is an integrated development environment that focuses on leveraging Power-
Shell as a dynamic language. Its goal is simply to allow users to be as productive
as possible in sculpting, running, interpreting results, and refactoring everything
from the “one-liners” PowerShell is famous for to fully fledged, production-quality
scripts.

Professional PowerShell Script Editor (PowerSE)
PowerSE is an advanced IDE console and has all the features you’ve come to expect
from a professional editor. It supports color syntax highlighting, IntelliSense
(PowerShell, WMI, and .NET), tab completion, context-sensitive Help, and much
more.

PrimalScript
No matter what your role is—system, database, or network administrator; web
developer; or end user developer—you probably need to work with multiple tech-
nologies, languages, and file formats at the same time. Take charge of your script
development regardless of what language you use and combine PrimalScript’s
powerful editing and packaging abilities with your scripting skills.

PowerShell Plus
This is the advanced PowerShell development environment. With it, you can learn
PowerShell fast using the Interactive Learning Center; run PowerShell commands
with the powerful interactive console; debug PowerShell 10 times faster with the
advanced script editor; execute scripts remotely using customized configurations;
access hundreds of preloaded scripts in the QuickClick library; search and down-

10 | Chapter 2: Getting Started

http://powergui.org/index.jspa
http://www.powershellanalyzer.com/
http://powerwf.com/products/powerse.aspx
http://www.sapien.com/software/primalscript
http://www.idera.com/PowerShell/powershell-plus/

load thousands of community scripts; and enable team collaboration using Source
Control integration.

There are other editors out there that have powerful capabilities and are highly cus-
tomizable to your needs.

Vim
Short for “Vi improved,” Vim is an advanced text editor that seeks to augment the
power of the de facto Unix editor Vi with a more complete feature set. Download
Vim here: http://www.vim.org/index.php. You can also download default syntax
coloring for Windows PowerShell here: http://www.vim.org/scripts/script.php
?script_id=1327.

Notepad++
This is a free (as in “free speech” and also as in “free beer”) source code editor and
Notepad replacement that supports several languages. You can download Notepad
++ here: http://notepad-plus-plus.org/.

This is a sampling of what is available to you for editing, running, and debugging
PowerShell scripts. Each has options out of the box and different levels of customiza-
bility.

Experiment and enjoy!

PowerShell and Visual Studio
Visual Studio is a development environment for C# programmers used to create con-
soles. It is also used to develop graphical user interface (GUI) applications, along with
Windows Forms applications, websites, web applications, and web services. These are
developed in both native and managed code for all platforms supported by Microsoft
Windows, Windows Mobile, Windows CE, and .NET Framework.

Since you can embed PowerShell in a C# application—see Chapter 5—both Microsoft
and PowerShell MVPs have written PowerShell consoles that work directly in and with
Visual Studio:

NuGet
This is a free, open source, developer-focused, package management system for
the .NET platform intent on simplifying the process of incorporating third-party
libraries into a .NET application during development. NuGet also comes with a
PowerShell console that runs inside Visual Studio. Download NuGet here: http://
nuget.codeplex.com/.

StudioShell
StudioShell is written and maintained by Jim Christopher, PowerShell MVP, on
CodePlex at http://studioshell.codeplex.com/. If you’ve ever implemented a Visual
Studio extension, such as an add-in or a package, you know how convoluted this
space has become. You have to become an expert in your tooling if you want to

PowerShell and Visual Studio | 11

http://www.vim.org/index.php
http://www.vim.org/scripts/script.php?script_id=1327
http://www.vim.org/scripts/script.php?script_id=1327
http://notepad-plus-plus.org/
http://nuget.codeplex.com/
http://nuget.codeplex.com/
http://studioshell.codeplex.com/

change it. StudioShell changes this landscape by exposing many of Visual Studio’s
extensibility points in a simple and consistent way. It makes the Visual Studio IDE
interactive and discoverable.

The PowerShell Community
PowerShell has a thriving community, offering open source projects and script reposi-
tories, forums, and even a PowerShell magazine. If you wondering where to get started,
have a question, or want to know if someone else has already created a tool you need,
these are the places to check. Plus, you can get a look at some advanced uses of
PowerShell and contribute solutions based on ones that already exist.

CodePlex
Search CodePlex for PowerShell (http://bit.ly/KMSAWk), and you will find that
there are over 450 open source projects—and that number is growing. Here you’ll
find everything from tools that bring features from the UNIX world to Azure man-
agement cmdlets, testing frameworks, SQL Server integration scripts, Facebook
and Twitter integration, and so much more.

PoShCode.org
The PowerShell Code Repository (http://poshcode.org/) is maintained by a
PowerShell MVP, Joel “Jaykul” Bennett.

PowershellCommunity.org
This is a community-run and vendor-sponsored organization that provides
evangelism for all things PowerShell through news, forums, user group outreach,
script repository, and other resources.

PowerShell Magazine
I am a cofounder and editor of PowerShell Magazine (http://www.powershellmaga
zine.com/), along with four other great guys and PowerShell MVPs: Ravikanth
Chaganti, Aleksandar Nikolić, Shay Levy, and Steven Murawski.

Check out the site, submit an article, or just enjoy the targeted PowerShell content
from some of the best scripters in the community.

Many of us in the PowerShell community are also on the forums, answering questions
on StackOverflow (search “powershell”), and involved on Twitter (#powershell).

The Future of PowerShell on Windows 8
As mentioned in Chapter 1, Jeffrey Snover, a creator of PowerShell, wrote the Monad
Manifesto (http://bit.ly/9uyHlY) in 2002 (remember, Monad was the code name for
PowerShell). PowerShell was released as a separate download in 2006. Three years later,
in 2009, PowerShell debuted as part of the Windows 7 operating system. A few hundred
million copies of Windows 7 have been licensed in the years since its release, meaning
there are a few hundred million copies of PowerShell out there, installed and ready to go.

12 | Chapter 2: Getting Started

http://bit.ly/KMSAWk
http://poshcode.org/
http://powershellcommunity.org/
http://www.powershellmagazine.com/
http://www.powershellmagazine.com/
http://bit.ly/9uyHlY

In 2012, Windows 8 will be delivered with PowerShell v3. In addition, Windows Server
2012 will also be released. PowerShell v3 has numerous enhancements across the entire
product, shipping with hundreds more PowerShell cmdlets for the client, and in the
case of Windows Server 2012, over 2,300 cmdlets.

And as if this growth were not impressive enough, Microsoft is not the only company
delivering PowerShell-enabled software. VMware, Cisco, Intel, Citrix, and SPLUNK,
just to name a few, are doing so as well.

Summary
We’ve barely covered the basics here. There is an entire ocean of PowerShell awaiting
us, and that’s not including third-party PowerShell systems, community-delivered
scripts, or the internal Microsoft teams outfitting their products.

You could say PowerShell is about 10 years old, maybe a little older, measuring from
the publication of the Monad Manifesto. The team that developed PowerShell drew
inspiration from systems developed over 30+ years ago in DEC and IBM. PowerShell
is as programmable as Perl, Python, and Ruby and takes it cues from UNIX shells.

In addition, the community is thriving, which is a fundamental component to any new
language and approach. Microsoft has over 50 PowerShell MVPs worldwide, providing
feedback to the Microsoft PowerShell team as well as the other teams who are devel-
oping cmdlets and surfacing their APIs for easy consumption in PowerShell.

Jeffrey Snover has said, “If you’re planning on working with Microsoft systems for the
next year, invest some time with PowerShell—it’ll make your life simpler.” In the next
chapters, we’ll take his advice and dive a little deeper into this powerful platform.

Summary | 13

CHAPTER 3

The Dime Tour

Scripting and system programming are symbiotic. Used
together, they produce programming environments of

exceptional power.

—John Ousterhout, creator of Tcl

PowerShell provides rapid turnaround during development for a number of reasons. It
eliminates compile time, it’s an interpreter and makes development more flexible by
allowing programming during application runtime, and it sits on top of powerful com-
ponents, all connected by the .NET framework.

If you want to write PowerShell scripts, you need to learn the PowerShell syntax and
its building blocks—like cmdlets and functions—and how to tap into PowerShell’s
ecosystem, including the .NET Framework, third-party DLLs, and DLLs you create.

There’s a lot to cover, even in the dime tour, so let’s get started.

The Object Pipeline: The Game Changer
These 63 characters are what hooked me when I saw my first PowerShell demo:

Get-Process | Where {$_.Handles -gt 750} | Sort PM -Descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 965 43 173992 107044 602 157.34 2460 MetroTwit
 784 21 88196 83588 290 19.84 5776 chrome
 952 44 39456 20100 287 29.27 2612 explorer
 784 34 34268 2836 109 4.56 3712 SearchIndexer
 1158 28 18868 14048 150 6.21 956 svchost
 779 14 3784 3900 36 4.46 580 lsass

This object pipeline conveys key concepts in PowerShell’s value proposition: maxi-
mizing effort and reducing time. Here are the highlights:

• Using cmdlets (Get-Process, Where, Sort) to compose solutions.

15

• Piping .NET objects, not just text.

• Eliminating parsing and praying. No need to count spaces, tabs, and other white-
space to pull out the Handles value and then convert it to numeric for the compar-
ison.

• Working with .NET properties directly: $_.Handles in the Where and PM in the Sort.

• Making code less brittle. If someone adds properties to the output of
Get-Process, my code is not affected. I am working with an object-oriented pipe-
line.

Automation References
When you create a console application project in Visual Studio, the wizard adds these
using statements for you:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

In a PowerShell session—which you start by launching the console or integrated
scripting environment (ISE)—PowerShell does more work for you. By default, there is
a lot available to you in a single PowerShell session. Later, I’ll cover how to import
DLLs that are not included by using the Add-Type cmdlet or the .NET Framework di-
rectly using [Reflection.Assembly]::Load*.

Because ISE is a WPF application, when you load it, you’ll have access to more DLLs
and namespaces like the PresentationCore, PresentationFramework, and WindowsBase.
This is a PowerShell snippet I used to print out what DLLs are referenced:

[System.AppDomain]::CurrentDomain.GetAssemblies() |
 Where {$_.location} |
 ForEach { Split-Path -Leaf $_.location } |
 Sort

The results of this snippet are as follows:

Microsoft.CSharp.dll
Microsoft.Management.Infrastructure.dll
Microsoft.PowerShell.Commands.Management.dll
Microsoft.PowerShell.Commands.Utility.dll
Microsoft.PowerShell.ConsoleHost.dll
Microsoft.PowerShell.Security.dll
mscorlib.dll
System.Configuration.Install.dll
System.Core.dll
System.Data.dll
System.DirectoryServices.dll
System.dll
System.Dynamic.dll
System.Management.Automation.dll
System.Management.dll

16 | Chapter 3: The Dime Tour

System.Numerics.dll
System.Transactions.dll
System.Xml.dll

PowerShell includes these automatically, so you are ready to go when you launch the
console or editor.

Semicolons
Semicolons are optional. I don’t use them in my scripts—too much noise and typing.
They are perfectly legal though, and coming from C#, you might find it hard to lose
that muscle memory of adding them.

PS C:\> $s = "Hello";
PS C:\> $s += " World"; $s += "!";
PS C:\> $s;
Hello World!

I do use them on the command line when I have multiple statements:

PS C:\> clear; dir *.cs

The good news is that if you copy and paste C# code, tweak it, and forget the semicolon,
the PowerShell code will still run.

Use them if you like; I prefer less typing and thus go without.

Return Statements
Return statements are optional, too. I briefly ran a PowerShell script club in New York
City. James Brundage, founder of Start-Automating (http://start-automating.com/),
created the idea of the script club while he was on the PowerShell team and ramping
up other groups in Microsoft. One of the club rules is write only the script you need, no
more.

So, while this is correct:

function SayHello ($p) {
 return "Hello $p"
}

SayHello World

this is preferred:

function SayHello ($p) {
 "Hello $p"
}

SayHello World

Return Statements | 17

http://start-automating.com/

There will be plenty of times when you do return in a function because it short-circuits
the execution of the script at that point. But remember: when using a dynamic language
like PowerShell, it is ceremony vs. essence. Prefer essence.

Datatypes
Datatypes are also optional. In the following example, $a = "Hello" is the same as var
a = "Hello"; in C#. Each environment recognizes the variable as a string.

$a = "Hello"
$a # Prints Hello
$a = 1
$a += 1
$a # Prints 2
$a = 1,2,3,"a" # Create an array of different types

[int]$a = "Hello" # Error: Cannot convert value "Hello" to type "System.Int32".

PowerShell reduces your typing by not requiring you to explicitly define the type of
variables (another example of privileging essence over ceremony). This is a significant
time saver and handy when you are trying to plow through some quick prototypes on
your own. When you need to take it to a more formal level—for example, sharing your
script with someone else or putting your script into production—you can strongly type
your variables, and this feature is at your fingertips. Passing a string to either parameter
throws an error, which can be caught.

function Do-PrecisionCalculation {
 param (
 [Double]$Latitude,
 [Double]$Longitude
)

 [Math]::Sin($Latitude) * [Math]::Sin($Longitude)
}

Exception Handling
PowerShell supports try/catch/finally, which should feel familiar to .NET developers.
PowerShell v1 introduced the trap statement, which still works, but I prefer try/catch/
finally.

Break
Here, I'll use the PowerShell trap statement to trap the error and stop execution of the
script using the break statement.

trap {"trapped: $($error[0])"; break}
1/0
"done"

18 | Chapter 3: The Dime Tour

Results:

trapped: Attempted to divide by zero.
Attempted to divide by zero.
At line:3 char:1
+ 1/0
+ ˜˜˜
 + CategoryInfo : NotSpecified: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : RuntimeException

Continue
Here is the same trap example, except I'll use the continue statement. We should see
"done" printed.

trap {"trapped: $($error[0])"; continue}
1/0
"done"

Results:

trapped: Attempted to divide by zero.
done

Try/Catch/Finally
try {
 1/0
 "Hello World"
} catch {
 "Error caught: $($error[0])"
} finally {
 "Finally, Hello World"
}

Results:

Error caught: Attempted to divide by zero.
Finally, Hello World

Quoting Rules
The following code demonstrates quoting rules in PowerShell. One key item I want to
dial in on here is that the backtick (`) is the escape—not the backslash (\).

The backslash is still the escape character for regular expressions, and
PowerShell does support .NET regexes.

"A string"
A string

Quoting Rules | 19

"A string with 'Quotes'"
A string with 'Quotes'

"A string with `"Escaped Quotes`""
A string with "Escaped Quotes"

$s = "PowerShell"
"A string with a variable: $s"
A string with a variable: PowerShell

"A string with a quoted variable: '$s'"
A string with a quoted variable: 'PowerShell'

'Variables are not replaced inside single quotes: $s'
Variables are not replaced inside single quotes: $s

PowerShell Subexpressions in Strings
By using the subexpression notation, you can include arbitrary expressions in expand-
able strings. A subexpression is a fragment of PowerShell script code that’s replaced by
the value resulting from the evaluation of that code.

$process = (Get-Process)[0]

$process.PM # Prints 31793152
"$process.PM" # System.Diagnostics.Process (AddInProcess32).PM
"$($process.PM)" # Prints 31793152

Your mileage will vary; the PM property will have a different value on your system. The
key here is that if you do not wrap $process.PM in a subexpression $(...), you’ll get a
result you’d never expect.

Here-Strings
Here-strings are a way to specify blocks of string literals. They preserve the line breaks
and other whitespace, including indentation, in the text. They also allow variable sub-
stitution and command substitution inside the string. Here-strings follow the quoting
rules outlined earlier.

Great Code Generation Techniques
In the following block of string literals, I show how single and double quotes can be
printed. I also embed a variable $name that gets expanded.

I set $name outside of the HereString to World.

20 | Chapter 3: The Dime Tour

$name = "World"

$HereString = @"
This is a here-string
It can contain multiple lines
"Quotes don't need to be escaped"
Plus, you can include variables 'Hello $name'
"@

This is the here-string output:

This is a here-string
It can contain multiple lines
"Quotes don't need to be escaped"
Plus, you can include variables 'Hello World'

C# Code
Here-strings make code generation easier and more readable. I can copy a snippet of
C#, paste it into the here-string, drop in some variables for substitution, and I’m off to
the races.

$methodName = "Test"
$code = @"
public void $methodName()
{
 System.Console.WriteLine("This is from the $methodName method.");
}
"@

$code

Here are the results:

public void Test()
{
 System.Console.WriteLine("This is from the Test method.");
}

Closures, Functions, and Lambdas
A closure—also known as a lexical closure, function closure, function value, or functional
value—is a PowerShell scriptblock coupled with a referencing environment for the
nonlocal variables of that scriptblock. A PowerShell scriptblock allows the code to
access variables outside its typical scope. Scriptblocks do not require a name and can
be invoked using the call operator, &, as shown here:

$n = "PowerShell"
$closure = {"Hello $n"}
& $closure
Hello PowerShell

A scriptblock can have a name; this is called a function:

Closures, Functions, and Lambdas | 21

function Add5 ($num) {
 $num + 5
}

Add5 5
10

Or it can be anonymous (without a name), which is known as a lambda:

$add5 = {param($num) $num + 5}
& $add5 5 # The call operator works with parameters too!
10

Scriptblocks, Dynamic Languages, and Design Patterns
This example demonstrates one way to apply the strategy design pattern. Because
PowerShell is a dynamic language, far less structure is needed to get the job done. I
want to employ two strategies, both using multiplication. One uses the multiplication
operator, while the other uses multiple additions. I could have named each scriptblock,
thereby creating a function, like so: function CalcByMult($n,$m) {} and function Calc
ByManyAdds($n,$m) {}.

$sampleData is a multidimensional array
$sampleData = @(
 ,(3,4,12)
 ,(5,-5,-25)
)
$strategies is an array of scriptblocks
$strategies =
{param($n,$m) $n*$m},
{
 param($n,$m)
 1..$n | ForEach {$result = 0} { $result += $m } {$result}
}

ForEach($dataset in $sampleData) {
 ForEach($strategy in $strategies) {
 & $strategy $dataset[0] $dataset[1]
 }
}

The nested ForEach loops first loop through the sample data and then through each of
the strategies. On the first pass, & $strategy $Dataset[0] $Dataset[1] expands to and
runs & {param($n,$m) $n*$m} 3 4. This produces the result 12. Next time through the
inner loop, I’ll have the same parameters, but the strategy will change to calculating
the result doing multiple adds.

22 | Chapter 3: The Dime Tour

Arrays
A PowerShell array is your .NET System.Array. PowerShell makes interacting with
arrays simpler. You can still work with them in the traditional way through subscripts,
but you can also do much more.

It is dead simple to create arrays in PowerShell: separate the items with commas, and
if they are text, wrap them in quotes.

$animals = "cat", "dog", "bat"
$animals.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

$animals

cat
dog
bat

Creating an Empty Array
As simple as it is to create an array with items, it is equally simple to create an empty
array using @(). This is a special form of subexpression.

$animals = @()
$animals.Count
0

Adding an Array Item
You can easily add elements to an array using the += operator:

$animals = "cat", "dog", "bat"
$animals += "bird"
$animals

cat
dog
bat
bird

Retrieving an Element from an Array
You can access a specific array element in a familiar way using subscripts:

$animals = "cat", "dog", "bat"
$animals[1]
dog

Arrays | 23

Array Slicing
Array slicing is an operation that extracts certain elements from an array and returns
them as a new array. We can print out the first two elements using the PowerShell range
notation 0..1, or print out the last element of the array using −1.

$animals = "cat", "dog", "bat"

$animals[0..1]
cat
dog

$animals[-1] # Get the last element
bat

Finding Array Elements
You can use PowerShell comparison operators with arrays, too. Here I am searching
the array for elements –ne (not equal) to cat:

$animals = "cat", "dog", "bat"
$animals -ne 'cat'
dog
bat

I use the –like operator and get wildcards:

$animals = "cat", "dog", "bat"
$animals -like '*a*'
cat
bat

Reversing an Array
Using the static method Reverse from the Array class, we can invert the elements and
then print them. This is another example of the seamlessness of PowerShell and
the .NET Framework:

$animals = "cat", "dog", "bat"
[array]::Reverse($animals)
$animals

Prints
bat
dog
cat

Assigning Values to Multiple Variables in an Array
In PowerShell, you can assign values to multiple variables in a single pass. Here I take
a heterogeneous array with five elements and set three variables—$FirstName, $Last
Name, and $Rest—in one line. The first two variables are assigned items 0 and 1 of the

24 | Chapter 3: The Dime Tour

array, respectively, and $Rest gets the remainder of the array—items 2, 3, and 4.
$Rest is itself an array after the assignment.

PS C:\> $items = "Doug", "Finke", "NY", "NY", 10017
PS C:\> $FirstName, $LastName, $Rest = $items

PS C:\> $FirstName
Doug
PS C:\> $LastName
Finke
PS C:\> "$Rest"
NY NY 10017

Parentheses and Commas
Coming from C# to PowerShell, you’ll find that parentheses require a little extra cog-
nitive effort. They show up where you expect them: around and between parameters
to a function.

function Test ($p, $x) {
 "This is the value of p $p and the value of x $x"
}

If you use parentheses when you call the function Test, you get unexpected results:

Test (1, 2)
This is the value of p 1 2 and the value of x

Here is how you revise the previous example to get the results you’d expect:

Test 1 2
This is the value of p 1 and the value of x 2

Calling Test with (1, 2) actually passes the numbers 1 and 2 as an array to the param-
eter $p; PowerShell unrolls that, and the string is printed.

This takes practice, but don’t worry—it is absolutely worth the investment.

Hash Tables
A hash table or hash map is a data structure that lets you map keys (e.g., a person’s
name) to their associated values (e.g., the person’s telephone number). A hash table
implements an associative array.

Creating an Empty Hash Table
The @{} creates an empty hash table, similar to the @() used to create the empty array.

$h = @{}
$h.Count
0
$h.GetType()

Hash Tables | 25

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Hashtable System.Object

Adding a Hash Table Item
Once we have an empty hash table, we can map keys and values to it. With PowerShell,
we can use either the traditional approach or dot notation:

$h = @{}
$h["Item0"] = 0 # More ceremony
$h.Item1 = 1 # Notice, dot notation
$h.Item2 = 2
$h # Prints the Hash table
Name Value
---- -----
Item1 1
Item0 0
Item2 2

Initializing a Hash Table with Items
Here I create a hash table and two keys with values. Then, using dot notation, I print
out the value of the key named Item1.

$h = @{Item1=1;Item2=2}
$h.Item1 # dot notation and no casting
1

Concatenating Hash Tables
The addition operator also works on hash tables, as well as on strings and arrays.

$h1 = @{a=1;b=2}
$h2 = @{c=3;d=4}

$h1+$h2

Prints
Name Value
---- -----
d 4
c 3
b 2
a 1

Get-Member
Get-Member returns the members (properties and methods) of objects at the command
line. It is one of the key cmdlets I use regularly. I get all of the information about an
object—its type, methods, properties, events, and more—right there. When working

26 | Chapter 3: The Dime Tour

with a script, you’ll find it very handy; you can just add an $obj | Get-Member in the
script and inspect all these details about an object you are working with.

1.0 | Get-Member

 TypeName: System.Double

Name MemberType Definition
---- ---------- ----------
CompareTo Method int CompareTo(System.Object value)
Equals Method bool Equals(System.Object obj), bo
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToBoolean Method bool ToBoolean(System.IFormatProvi
ToByte Method byte ToByte(System.IFormatProvider
ToChar Method char ToChar(System.IFormatProvider
ToDateTime Method System.DateTime ToDateTime(System.
ToDecimal Method decimal ToDecimal(System.IFormatPr
ToDouble Method double ToDouble(System.IFormatProv
ToInt16 Method System.Int16 ToInt16(System.IForma
ToInt32 Method int ToInt32(System.IFormatProvider
ToInt64 Method long ToInt64(System.IFormatProvide
ToSByte Method System.SByte ToSByte(System.IForma
ToSingle Method float ToSingle(System.IFormatProvi
ToString Method string ToString(), string ToString
ToType Method System.Object ToType(type conversi
ToUInt16 Method System.UInt16 ToUInt16(System.IFor
ToUInt32 Method System.UInt32 ToUInt32(System.IFor
ToUInt64 Method System.UInt64 ToUInt64(System.IFor

Filtering with Get-Member
In the preceding example, notice it tells you the type right at the top. I used a double
as an example; if I had instead used a reference type, you would see properties, events,
and more. With Get-Member, you can filter on MemberType, too.

New-Object Net.Webclient | Get-Member -MemberType Property

 TypeName: System.Net.WebClient

Name MemberType Definition
---- ---------- ----------
BaseAddress Property System.String BaseAddress {get;set;}
CachePolicy Property System.Net.Cache.RequestCachePolicy
Container Property System.ComponentModel.IContainer
Credentials Property System.Net.ICredentials Credentials
Encoding Property System.Text.Encoding Encoding {get;set;}
Headers Property System.Net.WebHeaderCollection Headers
IsBusy Property System.Boolean IsBusy {get;}
Proxy Property System.Net.IWebProxy Proxy {get;set;}
QueryString Property System.Collections.Specialized.NameVal
ResponseHeaders Property System.Net.WebHeaderCollection ResponseHea

Get-Member | 27

Site Property System.ComponentModel.ISite Site {get;set;}
UseDefaultCredentials Property System.Boolean UseDefaultCredentials {get;se

Using Get-Member with Collections
Here is some PowerShell magic that is useful, but sometimes not what you want:

$range = 1..10
$range | Get-Member

By piping the $range to Get-Member, PowerShell prints out the details about the different
elements in the array, not the collection itself. In this case, since I used the range op-
erator 1..10, all the elements are Int32, so I get the details about the type Int32.

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
ToBoolean Method bool ToBoolean(System.IFormatProvider provid
ToByte Method byte ToByte(System.IFormatProvider provider)
ToChar Method char ToChar(System.IFormatProvider provider)
ToDateTime Method System.DateTime ToDateTime(System.IFormatPro
ToDecimal Method decimal ToDecimal(System.IFormatProvider pro
ToDouble Method double ToDouble(System.IFormatProvider provi

If the $range were heterogeneous, Get-Member would return the details for each type.
(To be more accurate, the PowerShell object flow engine would do that, but I won’t be
discussing the flow engine here.)

What if you wanted to get the details on $range though? Simple—use the –InputOb
ject on the Get-Member cmdlet:

$range = 1..10
Get-Member -InputObject $range

Here is an edited version of what is returned about the collection $range.

 TypeName: System.Object[]

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length
Add Method int Add(System.Object value)
Clear Method System.Void Clear()
GetEnumerator Method System.Collections.IEnumerato
GetLowerBound Method int GetLowerBound(int dimensi
IndexOf Method int IndexOf(System.Object val
Initialize Method System.Void Initialize()
Insert Method System.Void Insert(int index,
IsReadOnly Property bool IsReadOnly {get;}
IsSynchronized Property bool IsSynchronized {get;}
Length Property int Length {get;}

Looking into PowerShell cmdlets deeper, you’ll often find options where piping or
passing parameters—while not necessarily what you originally had in mind—yields

28 | Chapter 3: The Dime Tour

the results that you want. This speaks to the cognitive shift of PowerShell and is worth
the time you invest.

Inject a GUI into the PowerShell Command Line
Let’s say I get too much output at the command line from Get-Member. No problem—
let’s pipe to a GUI using Out-GridView. Out-GridView comes with PowerShell, ready to
go out of the box (see Figure 3-1).

New-Object Net.Webclient | Get-Member | Out-GridView

I recommend playing with Out-GridView. It has a filter, which subsets the list as you
type. In version 3, it has a –PassThru parameter that lets you select items, which get
passed down the pipeline when you click OK.

Out-GridView saves you time and effort when debugging. In a multiline script, you can
add a line where you pipe a variable containing an array of objects to it and run the
script, and this window pops up. Out-GridView is a great way to inspect what happened.

New-Object
New-Object creates an instance of a Microsoft .NET Framework object. In this section,
I’ll “new” up a component object model (COM) object and launch Internet Explorer,
and then I’ll new up a native PowerShell object, PSObject, and add properties to it. I’ll
then show the streamlined PowerShell v3 syntax, and finally, I’ll work with a .NET
Framework object.

Figure 3-1. Injecting a GUI

New-Object | 29

Launching Internet Explorer
Here, in three lines of PowerShell, I can create a COM object, call a method on it, and
set a property. I don’t know how many lines are needed to get this done in C#. Re-
member the ProgID? That is how we used to interact with COM objects. Here, I am
using the ProgID InternetExplorer.Application; then I’m navigating to the Google
page and making IE visible. If you’ve got a ProgID, PowerShell can make short work of
it.

$ie = New-Object -ComObject InternetExplorer.Application
$ie.Navigate2("http://www.google.com")
$ie.Visible = $true

Creating a New PowerShell Object
PSObject is the PowerShell object. It is the root of the synthetic type system in Power-
Shell. Here, I am creating a new one and adding two properties to it, Name and Age, and
setting values to them:

$obj = New-Object PSObject -Property @{
 Name = "John"
 Age = 10
}

$obj.GetType()
IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False PSCustomObject System.Object

$obj
Age Name
--- ----
 10 John

PowerShell v3 is more pithy

Version 3 of PowerShell comes with a ton of new features. Here, I am getting the same
results as the previous example, but with less typing. Less typing, more results—that’s
what PowerShell is all about.

[PSCustomObject] @{
 Name = "John"
 Age = 10
}

Name Age
---- ---
John 10

30 | Chapter 3: The Dime Tour

Using the .NET Framework
I can also instantiate .NET Framework components. This is a primary use case for
a .NET developer. I use this to instantiate the components I write and deliver as DLLs.

$wc = New-Object Net.WebClient
[xml]$resp = $wc.DownloadString("http://feeds.feedburner.com/DevelopmentInABlink")
$resp.rss.channel.item| ForEach {$_.Title}

NumPy 1.5 Beginner's Guide
Design Patterns in Dynamic Languages–PowerShell
Using PowerShell in Roslyn’s C# Interactive Window
PowerShell – Handling CSV and JSON
PowerShell for .Net Developers–A Survey
PowerShell vNext – Web Service Entities
Reading RSS Feeds–Even easier in PowerShell V3

Add-Member
Here I used Add-Member to extend the .NET string object and added Reverse, which
reverses the letters in the string. I created a new ScriptProperty (Add-Member can add
other types like NoteProperty) and in the scriptblock, I referenced the object and its
properties using the $this variable.

$s = "Hello World" |
 Add-Member -PassThru ScriptProperty Reverse {$this[$this.Length..0] -join ""}

$s
Hello World

$s.Reverse
dlroW olleH

Add-Type
The Add-Type cmdlet adds a Microsoft .NET Framework type (a class) to a Windows
PowerShell session. Add-Type has a few parameters I’ll demonstrate in this section; for
example, TypeDefinition lets me compile C# code on the fly, and it supports VB.NET.
I’ll also show the Path parameter, which lets me load a DLL into a PowerShell session.

Compiling C# on the Fly
In the following example, you should recognize the text inside the here-string—a.k.a.
the stuff between the @""@. It is a C# MyMathClass class with a single method, Add. I am
passing the here-string to the –TypeDefinition parameter, and the Add-Type cmdlet will
compile it on the fly, in memory, into the current PowerShell session. If I am running
a script, it compiles the code just for the life of that script.

Add-Type | 31

Add-Type -TypeDefinition @"
public class MyMathClass {
 public int Add(int n1, int n2) {
 return n1 + n2;
 }
}
"@

Newing Up the Class
After compiling the C# code, I want to use it, so I use the New-Object cmdlet. This is
equivalent to var obj = new MyMathClass();. From there, I print out the object’s type
and then use Get-Member to get the details of the object I am working with.

$obj = New-Object MyMathClass
$obj.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False MyMathClass System.Object

$obj | Get-Member

 TypeName: MyMathClass

Name MemberType Definition
---- ---------- ----------
Add Method int Add(int n1, int n2)
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()

Calling the Add Method on MyMathClass
Let’s exercise the newly minted code by adding the numbers 1–5 to themselves and
printing them out. It’s important to note here that I am not telling PowerShell how to
print or loop. I don’t check for the end of the stream, or end of file. It just works.

1..5 | ForEach {$obj.Add($_,$_)}
2
4
6
8
10

Wait, I Don’t Have the Source
What if I didn’t give you the C# source code? No problem. Use the –Path parameter
and let Add-Type do the rest.

Add-Type -Path C:\Temp\MyMathClass.dll

32 | Chapter 3: The Dime Tour

This is similar to adding a reference to a project and then a using statement. You can
apply the previous PowerShell statements for the same results.

I could also have used the .NET Framework to get the job done.

[Reflection.Assembly]::LoadFile("C:\Temp\MyMathClass.dll")

For more details, check out my blog post, “How to Load .NET Assemblies in a Pow-
erShell Session,” at http://bit.ly/c6H1a8.

“What Does % Do?” and Other Aliases
PowerShell has an aliasing system that allows you to create or change an alias for a
cmdlet or for a command element, such as a function, a script, a file, or other executable.

So, % is aliased to ForEach, and ? is aliased to Where. These two PowerShell lines are
equivalent; they find the even numbers, multiply them by 2, and print them:

1..10 | ? {$_ % 2 -eq 0} | % {$_*2}
1..10 | Where {$_ % 2 -eq 0} | ForEach {$_*2}
4
8
12
16
20

In my PowerShell profile, $PROFILE, I alias vs to the Visual Studio executable. So when-
ever I need to launch it, I simply type vs and press Enter:

Set-Alias vs
 "C:\Program Files\Microsoft Visual Studio 10.0\Common7\ide\devenv.exe"

Modules
PowerShell modules are fundamental to organizing your scripts. You can place your
scripts in subfolders, and from the module you can recursively find them all and dot-
source them into a PowerShell session. It’s a fantastic way to speed development. You
can just drop a script into a directory below your module (which has a .psm1 extension),
do an Import-Module –Force module name, and you’re ready to rock.

Here is a list of modules on my box. They are probably different than yours because I
have PowerShell v3 CTP2 installed on Windows 7.

Get-Module -ListAvailable | Select Name
AppLocker
BitsTransfer
CimCmdlets
Microsoft.PowerShell.Core
Microsoft.PowerShell.Diagnostics
Microsoft.PowerShell.Host
Microsoft.PowerShell.Management
Microsoft.PowerShell.Security

Modules | 33

http://bit.ly/c6H1a8

Microsoft.PowerShell.Utility
Microsoft.WSMan.Management
PSDiagnostics
PSScheduledJob
PSWorkflow
TroubleshootingPack

Modules are your friends. Learn them, love them, and use them. They are how
Microsoft teams deliver their PowerShell functionality. Once you grow beyond a few
scripts that interact, modules are the preferred packaging mechanism.

Let’s say I have this script stored in a PowerShell file in my scripts directory, C:\Scripts
\MyCountScript.ps1.

$count = 0
function Add-OneTocount { $count += 1 }
function Get-Count { $count }

I can source this script by inputting a dot (.) followed by the fully qualified script
filename, like so: . C:\Scripts\MyCountScript.ps1. Dot sourcing will load and run the
script; variables become global, as do functions. This is good news and bad news. The
good news is that it lets me rapidly iterate and problem solve. The bad news is, if I
deliver this as is to a colleague or client, and he has a script he dot-sources that uses
$count, we’ll have a collision.

Modules help with scoping, but that is just the beginning of what they do (remember,
this is the dime tour). I will illustrate quickly how to ramp up easily on modules. I can
rename my script to C:\Scripts\MyCountScript.psm1 (note, I only changed ps1 to
psm1). Now I need to “load” it, and since I cannot dot-source it I’ll use Import-Module.

Import-Module C:\Scripts\MyCountScript.psm1

That’s it! Now $count is not visible outside of the module, and we are safe.

As mentioned, there’s a lot more to modules, but again, the main thing is to learn them,
love them, and use them.

Summary
OK, that’s the end of the dime tour. We took a nice swim across the surface, dipped
under for a couple of feet, and had a bit of a deep dive. Remember, PowerShell v2 had
a couple hundred cmdlets, PowerShell v3 over 400, and Windows Server 2012 delivers
over 2,300. That’s a lot of good stuff, and it doesn’t even include PowerShell remoting,
background jobs, Windows Workflow, idiomatic aspects, best practices, tips and
tricks, and so much more.

PowerShell requires your investment. The good news is that you can become very
productive very quickly by just learning some basics. When you’re ready to develop
your PowerShell skills further, you’ll benefit by using it to support your development
process, deliver more powerful products, make your product more manageable, and

34 | Chapter 3: The Dime Tour

deliver faster and better functionality, all while enabling system integrators and end
users to generate custom solutions based on software you’re providing.

Want to know how? Read on.

Summary | 35

CHAPTER 4

Accelerating Delivery

In this chapter we’ll work through different types of text extraction and manipulation.
This functionality ties into creating code generators, which take over the task of writing
repetitive infrastructure code, thereby eliminating grunt work. PowerShell’s ability to
work in this way—reading text, XML, and DLL metadata—enables productivity and
consistency while driving up the quality of the deliverable.

Being able to rip through numerous source code files looking for text in a specific
context and extracting key information is super useful; primarily, it means we can locate
key information quickly. Plus, because we can generate a .NET object with properties,
we can easily pipe the results and do more work easily. For example, we can:

• Export the results to a CSV and do analysis on them with Excel.

• Catalog strings for use by QA/QC.

• Create lists of classes, methods, and functions.

Let’s get started exploring this useful and timesaving functionality.

Scanning for const Definitions
The examples in this section read C# files looking for strings containing the word
const, extracting the variable name and value. Scanning for strings across files takes
many forms—searching SQL files, PowerShell scripts, JavaScript files, and HTML files,
just to name a few. Once the information is extracted, you can use it again in many
ways—for example, cataloging strings for internationalization, analyzing code, creat-
ing indexes of class methods and functions, and locating global variables. The list goes
on and on.

public const int Name = "Dog";
const double Freezing = 32;

This reader will look for const definitions in C# files like the previous one and produce
the following output:

37

FileName Name Value
-------- ---- -----
test1.cs Name "Dog"
test1.cs Freezing 32

I will show two versions of the code. The first will read a single file, and the second will
search a directory for all C# files and process them. Both examples are nearly identical,
differing only in how I work with the Select-String cmdlet.

Reading a Single C# File
This is an example of a single C# file, test.cs. It has three const variables defined—two
scoped at the class level and one at the method level.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 public const string Test = "test";
 public const int TestX = 1;

 static void Main(string[] args)
 {
 const double PI = 3.14;
 }
 }
}

Next up, we’ll cover the PowerShell script to scan and extract the const pattern.

Using Select-String

It’s import to note that we are doing pattern matching here, not parsing. If one of these
lines of code is in a comment, this reader will find it because it cannot tell the difference
between a comment and a “real” line of code.

The reader will find these const definitions and then output them in this format. This
is an array of PowerShell objects, each having three properties: FileName, Name, and
Value.

$regex = "\s+const\s+\w+\s+(?<name>.*)\s+=\s+(?<value>.*);"

Select-String $regex .\test.cs |
 ForEach {
 $fileName = $_.Path
 ForEach($match in $_.Matches) {
 New-Object PSObject -Property @{
 FileName = $fileName

38 | Chapter 4: Accelerating Delivery

 Name = $match.Groups["name"].Value
 Value = $match.Groups["value"].Value
 }
 }
 }

Here is the result:

FileName Name Value
-------- ---- -----
test.cs Test "test"
test.cs TestX 1
test.cs PI 3.14

Select-String finds text in files or strings. For UNIX folks, this is equivalent to grep.
In this example, we are using a regular expression with the named groups "name" and
"value". Select-String can also find text using the –SimpleMatch keyword, meaning
Select-String will not interpret the pattern as a regular expression statement.

So, the parameters we’re passing are the pattern and filename. If matches are found,
they are piped to a ForEach. We capture the $fileName from the property $_.Path ($_ is
the current item in the pipeline) and then pipe the matches ($_.Matches) to another
ForEach. In the ForEach we create a new PSObject on the fly with three properties,
FileName, Name, and Value. Where did Name and Value come from? They came from the
named groups in the regular expression.

We extracted data and created a custom output type using Select-String and New-
Object PSObject. We can rip through any text-based file, searching for information,
and then present it as a .NET object with properties. We could have even piped this
data to Export-Csv .\MyFile.CSV, which converts it to comma-separated values (CSV)
and saves it to a file. Then we could do an Invoke-Item .\MyFile.CSV, opening the file
in Excel, parsed and ready to go.

Reading C# Files in a Directory
In this example, we use Select-String again. The difference is we’re doing a dir for
files ending in .cs and then piping them to Select-String. From there, the process is
the same as before.

$regex = "\s+const\s+\w+\s+(?<name>.*)\s+=\s+(?<value>.*);"

dir *.cs | Select-String $regex |
 ForEach {
 $fileName = $_.Path
 ForEach($match in $_.Matches) {
 New-Object PSObject -Property @{
 FileName = $fileName
 Name = $match.Groups["name"].Value
 Value = $match.Groups["value"].Value
 }
 }
 }

Scanning for const Definitions | 39

Here is the result:

FileName Name Value
-------- ---- -----
test.cs Test "test"
test.cs TestX 1
test.cs PI 3.14
test1.cs Color "Red"
test1.cs Name "Dog"
test1.cs Freezing 32

PowerShell simplifies the process of traversing directories to search for patterns in the
text and transforming the results into objects with properties. We could further pipe
these results to other PowerShell built-in cmdlets or to our own functions in order to
do all kinds of work for us.

Consider refactoring this script by varying either the regex or files you want to search
for, but keeping the same type of output.

This is a two-foot dive into what you can do using PowerShell’s Select-String, regular
expressions, and objects with properties. There is an entire ocean of possibilities you
can apply this extraction technique to with text files. Once the strings have been ex-
tracted and are in the form of a list of PowerShell objects, you can generate a wide
variety of output, including HTML documentation and many other programmatic
elements.

Working with Template Engines
A template engine is software that is designed to process templates and content to pro-
duce output documents. Writing a simple template engine in PowerShell is straight-
forward. This approach lets us write many different types of templates in text and then
leverage PowerShell to dynamically generate a file’s content based on variables or more
complex logic.

The Engine
Template engines typically include features common to most high-level programming
languages, with an emphasis on features for processing plain text. Such features in-
clude:

• Variables and functions

• Text replacement

• File inclusion

• Conditional evaluation and loops

Because we are using PowerShell to write the engine, we not only get all these benefits,
but we can also use all of PowerShell’s features, cmdlets, and functionality.

40 | Chapter 4: Accelerating Delivery

The parameter $ScriptBlock is the script block we’ll pass in a later example. To execute
it, we use the & (call operator). Invoke-Template supports the keyword Get-Template.
We define this keyword simply by creating a function named Get-Template. Here we
nest that function inside the Invoke-Template function. Get-Template take one param-
eter, $TemplateFileName.

function Invoke-Template {
 param(
 [string]$Path,
 [Scriptblock]$ScriptBlock
)

 function Get-Template {
 param($TemplateFileName)

 $content = [IO.File]::ReadAllText(
 (Join-Path $Path $TemplateFileName))
 Invoke-Expression "@`"`r`n$content`r`n`"@"
 }

 & $ScriptBlock
}

In essence, this example has three moving parts: the execution of the script block, which
calls Get-Template; the reading of that file’s contents, using the .NET Framework’s
System.IO.File.ReadAllText static method; and finally, PowerShell’s Invoke-Expres
sion, which evaluates the content just read as though it were a here-string.

Notice how Invoke-Template takes a -ScriptBlock as a second parameter. Practically
speaking, Invoke-Template is an internal domain-specific language (DSL), meaning we
have the entire PowerShell ecosystem available to us and can get really creative inside
this script block, calling cmdlets, getting templates, and generating code. This opens
the door for lots of automation possibilities, saving us time and effort and reducing
defects in our deliverables.

A Single Variable
Let’s use the template engine in a simple example. I set up this template in a file called
TestHtml.htm in the subdirectory etc.

<h1>Hello $name</h1>

We use an HTML tag plus PowerShell syntax to define the variable for replacement,
$name. Here are contents of the TestHtml.htm. Note, this is the verbose version. We
explicitly specify the parameter names –Path, -ScriptBlock, and -TemplateName.

dot-source it
. .\Invoke-Template.ps1

Invoke-Template -Path "$pwd\etc" -ScriptBlock {
 $name = "World"

Working with Template Engines | 41

 Get-Template -TemplateFileName TestHtml.htm
}

Here’s the terse approach, letting PowerShell bind the parameters:

dot-source it
. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {
 $name = "World"
 Get-Template TestHtml.htm
}

While the intent of code is clearer using named parameters, I prefer less typing and
typically write my code as terse as possible. Both versions are valid because of
PowerShell’s parameter binding.

Here is our result:

<h1>Hello World</h1>

Multiple Variables
Expanding on the theme of variable replacement, we’ll replace two variables. The tem-
plate is a blend of C# and PowerShell variables; after the variable replacement, it’ll be
a C# property.

public $type $name {get; set;}

And now, the script:

Invoke-Template "$pwd\etc" {
 $type = "string"
 $name = "FirstName"
 Get-Template properties.txt
}

Invoke-Template stitches the variables and template together, and I think it is important
to extrapolate here. You can have any number of Invoke-Template calls in a single script,
each pointing to a different filepath for its set of templates. Plus, the code inside the
script block can be far more involved in setting up numerous variables and calling Get-
Template multiple times, pulling in any number of templates.

Here is our result:

public string FirstName {get; set;}

Multiple Templates
Say we want to create both public and private C# variables. We do this by calling
different templates. In this example, I am demoing multiple templates. I want to create
two properties, a string FirstName and a DateTime Date. For the Date property though,

42 | Chapter 4: Accelerating Delivery

I want a get and a private set. I create a file in the etc directory called privateSet.txt
and stub what I want to generate.

Here are the contents of Test-MultipleVariableTemplate.ps1:

dot-source it
. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {

 $type = "string"
 $name = "FirstName"
 Get-Template properties.txt

 $type = "DateTime"
 $name = "Date"
 Get-Template privateSet.txt
}

This is incredibly useful; for example, we can write PowerShell code that reads the
schema of a SQL table, grabs the column names and datatypes, and generates an entire
C# class that maps our table to an object. Yes, there are other tools that do this, but
just a few lines of PowerShell will handle these key processes and give you control of
the entire workflow. Plus, most off-the-shelf products can’t always give us fine-grained
control over the acquisition, processing, and output of the results. There are always
exceptions.

Here is our result:

public string FirstName {get; set;}
public DateTime Date {get; private set;}

This is just a small sampling of what is possible with Invoke-Template. It’s a very pow-
erful way to organize simple text replacement and get a lot done. Now let’s move on
to some more involved scripts.

Complex Logic
In this example, we’re using the built-in Import-Csv cmdlet to read a CSV (comma-
separated value) file.

Type, Name
string, LastName
int, Age

Here, we’re piping the contents of the CSV to ForEach, setting the appropriate variables,
and finally calling the template properties.txt.

Invoke-Template "$pwd\etc" {
 Import-Csv $pwd\properties.csv | ForEach {
 $type = $_.Type
 $name = $_.Name
 Get-Template properties.txt

Working with Template Engines | 43

 }
}

Here is our result:

public string LastName {get; set;}
public int Age {get; set;}

The template is the same as the previous example, and the PowerShell script to create
it is nearly identical, the main difference being that the input here is from a CSV file.

We can continue to add properties to the CSV file, rerun the script, and code generate
as many C# properties as we need. With a little creativity, we might view this as a first
step in code generating an entire C# class, ready for compilation.

UML Style Syntax
To demonstrate how flexible PowerShell is, I created a file containing properties in
UML syntax and then used the built-in PowerShell cmdlet Import-Csv to read the file
and convert it to an array of PowerShell objects, each having the properties Name and
Type. By default, Import-Csv reads the first line and uses it to name the properties. I
override that by specifying Name and Type in the –Header property. I also override the
default delimiter “,” setting the –Delimiter property to “:”.

LastName : string
FirstName : string
Age : int
City : string
State : string
Zip : int

. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {
 Import-Csv -Path .\Uml.txt -Header "Name","Type" -Delimiter ":" |
 ForEach {
 $name = $_.Name
 $type = $_.Type
 Get-Template properties.txt
 }
}

With a little imagination, you can work up a number of interesting, useful formats that
make it simple to represent information and then transform it into many other types
of output.

Here is our result:

public string LastName {get; set;}
public string FirstName {get; set;}
public int Age {get; set;}
public string City {get; set;}
public string State {get; set;}
public int Zip {get; set;}

44 | Chapter 4: Accelerating Delivery

Reading XML
PowerShell is not limited to reading CSV files, so we have options. As a developer, I
use XML as a part of my daily diet. Here, I’ll play off the previous example of generating
C# properties, this time using XML to drive the input to the process.

<properties>
 <property>
 <type>string</type>
 <name>City</name>
 </property>
 <property>
 <type>string</type>
 <name>State</name>
 </property>
 <property>
 <type>string</type>
 <name>Zip</name>
 </property>
</properties>

Let’s read the XML and convert it:

Invoke-Template "$pwd\etc" {
 ([xml](Get-Content .\Properties.xml)).properties.property |
 ForEach {
 $type = $_.type
 $name = $_.name
 Get-Template properties.txt
 }
}

This is the same script as the complex logic version in the previous example, but instead
of reading from a CSV file with Import-Csv, we now read the file using Get-Content,
applying the PowerShell [xml] accelerator and dot notation over the nodes.

Here is the result:

public string City {get; set;}
public string State {get; set;}
public string Zip {get; set;}

There it is—the transformation of XML data into C #properties. The separation of the
text being replaced from the PowerShell that processes the input really highlights the
essence of using PowerShell. This handful of scripts processes and transforms infor-
mation into very readable and maintainable C#.

Bonus Round
Next we’ll invoke all three scripts one after the other. The PowerShell engine takes care
of handling the output from all of them. We’re bringing together information from
three disparate sources.

Working with Template Engines | 45

.\Test-MultipleVariableTemplate.ps1

.\Test-ComplexLogicTemplate.ps1

.\Test-ReadXMLTemplate.ps1

We can easily pipe this to Set-Content Person.cs, and we are well on our way to gener-
ating code that compiles. Here’s the result:

public string FirstName {get; set;}
public string LastName {get; set;}
public int Age {get; set;}
public string City {get; set;}
public string State {get; set;}
public string Zip {get; set;}

Using template engines and PowerShell, we have tremendous reach. We can pull in-
formation from numerous sources—a database, Excel, a web service, or a web page,
just to name a few. Plus, we can call Get-Template multiple times in the same script,
each instance pointing to different templates, and produce a number of different out-
puts.

Generating PowerShell Functions from C# Methods
Next, we’re going to compile a C# class, MyMath, on the fly, using the built-in Add-
Type cmdlet. Note, Add-Type also lets us load either a DLL or C# source file. Now we
have a new type, MyMath, loaded in our PowerShell session. We can use the methods on
the .NET Framework’s System.Type class, like GetMethods(), on this type to get infor-
mation.

$code = @"
 public class MyMath
 {
 public int MyAdd(int n1, int n2) { return n1 + n2; }
 public int MySubtract(int n1, int n2) { return n1 - n2; }
 public int MyMultiply(int n1, int n2) { return n1 * n2; }
 public int MyDivide(int n1, int n2) { return n1 / n2; }
 public void MyTest() {System.Console.WriteLine("Test");}
 }
"@

Add-Type -TypeDefinition $code

Here we take the output of GetMethods() and display it in a GUI using Out-GridView
(see Figure 4-1).

[MyMath].GetMethods() | Where {$_.Name -like "My*"} | Out-GridView

As you know, PowerShell is based on .NET, so here we tap into the framework and use
GetMethods() on the type MyMath. First, we’ll create the variable $code to hold our C#
class and its methods. Then, Add-Type will compile the code in the current PowerShell
session. Lastly, we use brackets [] around the name of our class MyMath, indicating to
PowerShell that it is a type, and then we can call GetMethods(). I frequently use this
approach when working with C# code/DLLs at the command line. I have used the

46 | Chapter 4: Accelerating Delivery

“long form” of the code in the script example for clarity. When I do this at the command
line, I like the pithy version better because it saves time, effort, and keystrokes.

In PowerShell v3, it gets simpler—cleaner, less noise, fewer keystrokes, and more
essence. Here the Where syntax loses the curly braces, and the $_:

[MyMath].GetMethods() | Where Name -like "My*" | Out-GridView

Get Parameters
Now we’ll take the last line of PowerShell from the previous example and pipe it to
ForEach, calling the .NET GetParameters() method. Then we’ll pipe it to Out-Grid
View and get a nice summary of parameter information on MyMath code implementation,
as shown in Figure 4-2.

[MyMath].GetMethods() | Where {$_.Name -like "My*"} |
 ForEach {
 $_.GetParameters()
 } | Out-GridView

Figure 4-1. Inject a GUI in your pipeline—showing methods on a C# object

Figure 4-2. Showing C# parameters from method signatures

Generating PowerShell Functions from C# Methods | 47

Pulling It All Together
If we wanted, we could type this by hand to get full access to MyMath in PowerShell.
PowerShell is an automation platform; I’m a lazy coder, so I’ll write a script to make
that happen.

$MyMath = New-Object MyMath

function Invoke-MyAdd ($n1, $n2) {$MyMath.MyAdd($n1, $n2)}
function Invoke-MySubtract ($n1, $n2) {$MyMath.MySubtract($n1, $n2)}
function Invoke-MyMultiply ($n1, $n2) {$MyMath.MyMultiply($n1, $n2)}
function Invoke-MyDivide ($n1, $n2) {$MyMath.MyDivide($n1, $n2)}
function Invoke-MyTest () {$MyMath.MyTest()}

Wrapping MyMath in PowerShell functions is a gateway to many capabilities. For ex-
ample, we can interact with MyMath at the command line or in scripts, write tests, and
pipe results to the rest of the PowerShell ecosystem. PowerShell enables us to compose
code in ways we can’t in a system language like C#. In this simple example, I let
PowerShell handle parameters through parameter binding so I can focus less on me-
chanics and more on problem solving:

Invoke-MyAdd 1 3
1..10 |
 ForEach {Invoke-MyAdd $_ $_} |
 ForEach {Invoke-MyMultiply $_ $_}

I’ve shown PowerShell code that can get the methods and parameters for an object that
is loaded into a PowerShell session. The next script will combine these, and using a
here-string, will create the PowerShell functions that fully wrap MyMath signatures in a
PowerShell way.

One line gets a bit funky, however. In the Get-Parameter function, I have "`$$
($_.Name)"; this is needed in order to generate the $n1. I use the PowerShell escape
character ` before the first $; otherwise, PowerShell would interpret that as $$. That is
a PowerShell automatic variable, which contains the last token in the last line received.
The $($_.Name) is a subexpression, and is a simple rule to memorize when you want to
expand variables in strings.

function Get-Parameter ($target) {
 ($target.GetParameters() |
 ForEach {
 "`$$($_.Name)"
 }
) -join ", "
}

@"
`$MyMath = New-Object MyMath
$([MyMath].GetMethods() | Where {$_.Name -like "My*"} | ForEach {

 $params = Get-Parameter $_

@"

48 | Chapter 4: Accelerating Delivery

function Invoke-$($_.Name) ($params) {`$MyMath.$($_.Name)($($params))}
"@
})

"@

Generating PowerShell wrappers is a scalable approach, as compared to manually
transforming the C# method signatures to PowerShell functions. In addition, if our C#
code is still changing, we have a single script solution to wrapping our C# functions
and make them PowerShell ready. Again, this saves us time and effort, and we’ll have
fewer finger errors.

Here is our result:

function Invoke-MyAdd ($n1, $n2) {$MyMath.MyAdd($n1, $n2)}
function Invoke-MySubtract ($n1, $n2) {$MyMath.MySubtract($n1, $n2)}
function Invoke-MyMultiply ($n1, $n2) {$MyMath.MyMultiply($n1, $n2)}
function Invoke-MyDivide ($n1, $n2) {$MyMath.MyDivide($n1, $n2)}
function Invoke-MyTest () {$MyMath.MyTest()}

This example is for illustration purposes. With some additional thought and work,
though, we can make it generic by parameterizing the final snippet. We can:

• Add a $Type parameter, which lets us pass in any type for inspection

• Add a Where filter parameter, to be used when the methods are piped from
GetMethods

• Add a variable name parameter, so we don’t have to hardcode $MyMath

One final thought: the text manipulation tools that PowerShell brings to the table are
invaluable for doing many types of transforms. In the next sections, you’ll see a few
more. These ideas are not new. PowerShell’s deep integration into Windows and
the .NET Framework are what makes it possible for developers to optimize their efforts.

Calling PowerShell Functions from C#
Next, we’ll compile more C# and then create a custom object rather than a
PSModuleInfo object using New-Module and the –AsCustomObject property. We’ll create
a single PowerShell function called test and store it in the variable $module so we can
pass it to the constructor in the C# class. Finally, we’ll call the C# InvokeTestMethod.
InvokeTestMethod looks up the PowerShell test function in the module that was passed
in the constructor. If the function is found, Invoke is called, all the ducks line up, and
PowerShell prints "Hello World".

Calling PowerShell Functions from C# | 49

This next example using Add-Type will work if you’re using PowerShell
v3.

If you are using PowerShell v2 and have not added powershell.exe.con-
fig to point to .NET 4.0, see Appendix A.

If you’re not sure what version of the .NET runtime your session is using,
type $PSVersionTable and look for the CLRVersion entry.

Add-Type @"
using System.Management.Automation;

public class InvokePSModuleMethod
{
 PSObject module;
 public InvokePSModuleMethod(PSObject module)
 {
 this.module = module;
 }

 public void InvokeTestMethod()
 {
 var method = module.Methods["test"];

 if(method != null) method.Invoke();
 }
}
"@

$module = New-Module -AsCustomObject {
 function test { "Hello World" | Out-Host }
}

(New-Object InvokePSModuleMethod $module).InvokeTestMethod()

That’s a long trek to get Hello World printed; we could have just typed "Hello
World" at the command line, after all. But there’s a method to the madness.

In the next section, we will use these pieces to create a visitor that uses PowerShell v3’s
new access to the abstract syntax tree (AST). We will read PowerShell source code and
extract information by parsing it, not just scanning for text patterns.

A hat tip goes to Jason Shirk, one of the PowerShell team’s language
experts, who shared the technique.

Overriding C# Methods with PowerShell Functions
OK, I’ve shown you how to pull out the metadata from compiled C# code and generate
PowerShell functions to wrap it. This is extremely useful when you’re exploring a

50 | Chapter 4: Accelerating Delivery

new .NET DLL. We can quickly extract key information about the component and
start kicking the tires right from the command line. Plus, because the .NET component
is wrapped in PowerShell functions, we can seamlessly plug into the PowerShell eco-
system, further optimizing our time and effort. For example, if the component returns
arrays of objects, we can use the Where, Group, and Measure cmdlets to filter and sum-
marize information rapidly.

Now we’ll move on to overriding C# base class methods with PowerShell functions.

The next example extracts metadata from a .NET DLL, generates C# methods over-
riding the base class methods, and creates a constructor that takes a PowerShell module.

Each of the C# methods doing the override uses the technique in the previous section
to look up the method in the PowerShell module and call it with the correct parameters.

I’m using the AST capabilities of PowerShell v3 to demonstrate the technique of ex-
tracting method signatures from C# and then injecting a PowerShell module to override
the implementation. This is valid for PowerShell v2 and can be applied to .NET solu-
tions employing inheritance.

The Breakdown
I’m going to break this script down into a few sections: the metadata extraction of the
PowerShell v3 AstVisitor methods, the subsequent C# code generation that puts the
PowerShell “hooks” in place, and the creation of the PowerShell custom object using
New-Module. This example will have a PowerShell function called VisitFunction and
mirrors the method I override in the base class AstVisitor. This PowerShell function
will be called each time a function is found in our source script. VisitFunction takes
$ast as a parameter and contains all the information about the function that has been
matched in our source script. I’ll be pulling out only the name and line number where
it was matched.

Looking for PowerShell Functions
In this source script, we want to find where all the functions are defined.

function test1 {"Say Hello"}
1..10 | % {$_}
function test2 {"Say Goodbye"}
1..10 | % {$_}
function test3 {"Another function"}
#function test4 {"This is a comment"}

We can see three functions named test1, test2, test3, and they are on lines 1, 3, and
5. The last function, test4, is a comment. I included it for two reasons. First, if we were
scanning the file using Select-String and pattern matching on function, this would
show up in the results and be misleading. Second, with the AST approach, test4 will

Overriding C# Methods with PowerShell Functions | 51

be recognized as a comment and therefore not included in the results of our search for
functions.

While it is easy to scan a file visually, if I’m looking at a large script with many functions,
I’d like an automated way to know what and where my functions are. Plus, if I can
extract this information programmatically, the potential is there to automate many
other activities.

Extracting Metadata and Generating C#
Here we’ll generate something a little more complex, leveraging the Invoke-Template
we built before. The goal is to create a C# class that has all of the override methods
found in System.Management.Automation.Language.AstVisitor. This is equivalent to
being in Visual Studio, inheriting from AstVisitor, overriding each method, and then
providing an implementation.

public override AstVisitAction $FunctionName($ParameterName ast)
{
 var method = module.Methods["$FunctionName"];
 if (method != null)
 {
 method.Invoke(ast);
 }
 return AstVisitAction.Continue;
}

The implementation we want to provide, for each overridden method, is a lookup for
that function name in the module/custom object passed from PowerShell. If one is
found, we’ll invoke it and pass it the AST for the declaration being visited.

[System.Management.Automation.Language.AstVisitor].GetMethods() |
 Where { $_.Name -like 'Visit*' } |
 ForEach {
 $functionName = $_.Name
 $parameterName = $_.GetParameters()[0].ParameterType.Name

 Get-Template AstVisitAction.txt
 }

This is the template that gets it done; the file is named AstVisitAction.txt.

Now we move on to the PowerShell code snippet that’ll figure out the FunctionName
and ParameterName and invoke the template that does the code generation.

The GetMethods() method returns a list of methods on the Type System.Management.Auto
mation.Language.AstVisitor. We’re filtering the list of methods to only the ones whose
names begin with Visit*—that is, Where { $_.Name -like 'Visit*' }. In the ForEach,
we grab the name of the function $_.Name and the name of the parameter type being
passed to it, $_.GetParameters()[0].ParameterType.Name.

using System;
using System.Management.Automation;

52 | Chapter 4: Accelerating Delivery

using System.Management.Automation.Language;

public class CommandMatcher : AstVisitor
{
 PSObject module;
 public CommandMatcher(PSObject module)
 {
 this.module = module;
 }

 $methodOverrides
}

The template sets up references, a constructor, and a backing store for the module being
passed in. The key piece is the $methodOverrides variable. This will contain all the text
generated from the previous template, AstVisitAction.txt.

. .\Invoke-Template.ps1
Invoke-Template $pwd\etc {

 $methodOverrides = Invoke-Template $pwd\etc {
 [System.Management.Automation.Language.AstVisitor].GetMethods() |
 Where { $_.Name -like 'Visit*' } |
 ForEach {
 $functionName = $_.Name
 $parameterName = $_.GetParameters()[0].ParameterType.Name

 Get-Template AstVisitAction.txt
 }
 }

 Get-Template CommandMatcher.txt
}

This is the completed script that generates a C# class ready for compilation. This class
handles visiting any PowerShell source, calling out to a PowerShell function to handle
the node that is visited. We’ll go over that next.

Fortunately, it’s not necessary to understand the recursive descent parser mechanism.
The fundamental point here is the metadata extraction and code generation, which is
the glide path to using the Add-Type cmdlet and compiling useful code on the fly in the
current context.

The PowerShell Module
Now that we have code-generated all of the overrides for the base class AstVisitor, we
will create a PowerShell module to pass to it that will be called back every time a
PowerShell function definition is detected.

$m = New-Module -AsCustomObject {

 $script:FunctionList = @()

Overriding C# Methods with PowerShell Functions | 53

 function VisitFunctionDefinition ($ast) {
 $script:FunctionList += New-Object PSObject -Property @{
 Kind = "Function"
 Name = $ast.Name
 StartLineNumber = $ast.Extent.StartLineNumber
 }
 }

 function GetFunctionList {$script:FunctionList}
}

We store this in the variable $m, and will pass it to the constructor later.

I added a helper function, GetFunctionList, which returns the script scoped variable.
FunctionList is initialized to an empty array to start and is populated in VisitFunction
Definition.

Each time a function declaration is matched, the PowerShell function VisitFunction
Definition is invoked. We then emit a PowerShell object with three parameters, Kind,
Name, and StartLineNumber. We hardcode Kind, for simplicity, and get the other two
values from the data passed in the $ast variable.

Testing It All
We’ll now create a reusable helper function that takes a PowerShell script and returns
the AST that can be “visited”; let’s call it Get-Ast. Next, we’ll “new” up the Command
Matcher we built in C# during the code-generation phase and pass in $m, which contains
our PowerShell module with the function we want to invoke. The variable $ast contains
the AST of the script passed in the here-string. The variable $ast is a System.Manage
ment.Automation.Language.ScriptBlockAst, and the method we want to invoke is
Visit(). We will pass $matcher, our custom visitor, to it. Finally, we will call $m.Get
FunctionList(), displaying the details about the functions that were found.

function Get-Ast
{
 param([string]$script)

 [System.Management.Automation.Language.Parser]::ParseInput(
 $script,
 [ref]$null,
 [ref]$null
)
}

$matcher = New-Object CommandMatcher $m

$ast = Get-Ast @'
function test {"Say Hello"}
1..10 | % {$_}
function test1 {"Say Goodbye"}
1..10 | % {$_}
function test2 {"Another function"}

54 | Chapter 4: Accelerating Delivery

'@

$ast.Visit($matcher)
$m.GetFunctionList()

This correctly finds the three functions in our test script, displaying the name of the
function and the line it is on as follows:

Name StartLineNumber Kind
---- --------------- ----
test 1 Function
test1 3 Function
test2 5 Function

You can easily rework this to process a single script or an entire directory of scripts. In
addition, you can add a filename as a property, thus enabling filtering of function names
and filenames. This way, we can semantically scan any number of PowerShell scripts
for a particular function name and quickly locate the file and line number where it lives.

We can also add more functions to the PowerShell module to match on parameters,
variable expressions, and more. From there, we could create a new PSObject with the
properties we wanted and then we’d have a list of key information about our scripts
that we could programmatically act on.

Using PowerShell’s System.Management.Automation.Language library like this is only one
application of what the library can do. There is a lot to explore here that is beyond the
scope of this book. If you’re familiar with the tool ReSharper from JetBrains and its
ability to refactor C# code, you’ll have an idea of the potential of System.Manage
ment.Automation.Language. For example, you could use it to rename part of a
PowerShell function name and ripple that change through an entire script accurately.
Another example is extracting a section of PowerShell code as a function, naming it,
adding it to the script, and replacing where it came from with the new function name.
Doing static analysis along the lines of the lint tool PSLint (http://bit.ly/bI9sLz)? No
problem with System.Management.Automation.Language.

This doesn’t come for free. You need to learn the ins and outs of this library. There is
much potential here for some great open source tools for PowerShell as well as oppor-
tunities to learn more about what this platform offers.

Summary
In this chapter, I showed several ways to use PowerShell to work with information,
transform it, and position it for consumption elsewhere. The information was stored
in C# files and text files, and it was even extracted directly from compiled DLLs. These
ideas can also be extended to SQL Server schemas, XML, JSON, and even Microsoft
Excel. Because it’s based on .NET, PowerShell easily integrates with all of these tools.

As a developer, I reuse and expand these approaches for every project I work on. I
actively seek out patterns in the workflow and automate them. This has numerous

Summary | 55

http://bit.ly/bI9sLz

benefits. Code generation has been around as long as software languages. PowerShell’s
deep integration to the .NET platform and its game-changing object pipeline optimizes
the development effort. Being able to crack open a DLL and inspect methods and
parameters—all from within a subexpression in a here-string—and then compile it on
the fly in a single page of code enables developers to iterate through ideas more rapidly.

Finally, being able to extend C# solutions by invoking PowerShell—and here is the
key—without having to touch the original C# code, is huge. As you might know,
scripting languages are sometimes referred to as glue languages or system integration
languages. PowerShell, being based on .NET, takes this definition to a whole new level.

56 | Chapter 4: Accelerating Delivery

CHAPTER 5

Add PowerShell to Your GUI

Adding scripting support to your application is one of
the most valuable things you can do for your client, let-
ting them add value to your software, and keep it current
over time with little or no overhead from the developers.

—Roy Osherove, author and consultant
(http://bit.ly/K0xClG)

When you add PowerShell to an application, other developers, end users, testers, and
system integrators can customize the application’s logic to better match their specific
needs. This approach is an efficient use of resources; developers can focus their efforts
on core functionality while allowing others to easily and independently customize the
application as they desire. Using PowerShell in this way obviates the need to distribute
the application source code for other developers to extend the application. As a result,
you do not need to support multiple versions of the application.

Thus, not only does adding PowerShell to an application speed software development,
but it also allows for common areas of application customization such as modifying
code to match particular businesses processes, automating repetitive tasks, adding
unique features, and accessing internal and remote data.

Embedding PowerShell in your C# Application
PowerShell is surfaced as a command-line application (the console), a scripting
language, and an API. In this section, I’ll show you the API and how simple it is to
create the PowerShell engine, call some cmdlets, and print out the results.

You’ll need to add a reference to PowerShell to follow along with these
examples. To do so, open the project file as a text file and add the fol-
lowing line into the <ItemGroup> section:

<Reference Include="System.Management.Automation" />

57

http://bit.ly/K0xClG

I’ve set up two C# extension methods, ExecutePS() and WritePS(). ExecutePS() extends
strings, and WritePS() extends List<PSObject>. The strings are the PowerShell com-
mands, and the List<PSObject> is the result of invoking those commands.

By default, the ExecutePS() method prints the results to the console. If you pass false
to ExecutePS(), it returns a list of PSObjects. PowerShell v3 takes a dependency on the
dynamic language runtime (DLR; http://bit.ly/9EzVgF), and PSObject implements IDy
namicObject. This lets us do a ForEach over the results and take advantage of late binding
to get at the ProcessName.

The ForEach block requires PowerShell v3 to be installed. If you only
have PowerShell v2, comment out the ForEach block, and the example
will run cleanly.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Management.Automation;

class Program
{
 private static void Main()
 {
 var script = "Get-Process | Where {$_.Handles -gt 400}";

 // Let the extension method
 // print out the results
 script.ExecutePS();

 // In PowerShell v3, PSObject
 // implements IDynamicObject
 foreach (dynamic item in
 script.ExecutePS(writeToConsole: false))
 {
 Console.WriteLine(item.ProcessName);
 }
 }
}

public static class PSExtensions
{
 public static List<PSObject> ExecutePS(
 this string script, bool writeToConsole = true)
 {
 var powerShell = PowerShell
 .Create()
 .AddScript(script);

 if (writeToConsole)
 {
 powerShell.AddCommand("Out-String");

58 | Chapter 5: Add PowerShell to Your GUI

http://bit.ly/9EzVgF

 powerShell
 .Invoke<PSObject>()
 .ToList()
 .WritePS();
 }

 // Lets the caller act on the returned collection
 // of PowerShell objects
 return powerShell
 .Invoke<PSObject>()
 .ToList();
 }

 public static void WritePS(this List<PSObject> psResults)
 {
 psResults.ForEach(i => Console.WriteLine(i));
 }
}

The script variable contains the PowerShell commands. The ExecutePS() method cre-
ates the PowerShell engine and then adds the commands with the AddScript() method.
We use the AddCommand() method to append the Out-String cmdlet to whatever is
specified in the script variable. This tells PowerShell to convert the objects returned
to their string representations. PowerShell will execute all of this after we call the
Invoke() method.

The Invoke() method returns an array of PowerShell PSObjects. Just as System.Object
is the root of the type system in .NET, PSObject is the root of the synthetic type system
in PowerShell.

The WritePS() method extends List<PSObject> by looping through the results and
printing it to the console.

This example shows how easy it is to include the PowerShell engine in your application.
You can use all of the PowerShell cmdlets with this approach, including external scripts
and modules developed by you, others in the community, third parties, or Microsoft.

I do not include any error management, profile loading, or REPL consoles here. If you
want to see such functionality in action, plus learn how to load your application objects
into the PowerShell run space, read on to see what you can do with the Beaver Music
application.

The Beaver Music application is a Windows Presentation Foundation (WPF) GUI
application, and I layer a simple WPF PowerShell console into it. It is a command line
in my WPF GUI, capable of working with all the objects in my app, including the
Managed Extensibility Framework (MEF) container and more. The best news is, it’s
included with the book and can be easily hooked into any of your GUI apps too. Let’s
get started.

Embedding PowerShell in your C# Application | 59

WPF is a computer-software graphical subsystem for rendering user in-
terfaces in Windows-based applications.

Beaver Music Application
The reference application for this chapter, Beaver Music, is a very simple music album
management system. It supports create, read, update, and delete (CRUD) actions for
albums. Beaver Music has the functionality you’d expect—a couple of dialogs for
adding and changing album information, and you can delete albums as well. What we
want to focus on is the PowerShell Console button (shown in Figure 5-1), a WPF ap-
plication that has the PowerShell engine embedded in it. As noted earlier, PowerShell
is surfaced as a console, a scripting language, and an API; the custom PowerShell con-
sole uses this surfaced API in conjunction with the Beaver Music application so it can
be scripted and automated. This works similarly to the way Microsoft Excel can be
automated with the embedded Visual Basic for Applications (VBA) scripting language.

PowerShell Console
After clicking on the PowerShell Console button, you’ll see Figure 5-2.

Each time the console is launched, I inject variables, which are instances of the running
components. For example, the top pane is a WPF textbox. I added a textbox reference
into the PowerShell run space, setting it to the variable name $ScriptPane. If I want to
change the background color of the $ScriptPane, I can type $ScriptPane.Background =
"Cyan" and press F5, and the background color of the textbox will change at runtime.

Figure 5-1. The Beaver Music app

60 | Chapter 5: Add PowerShell to Your GUI

The top pane is where you type in PowerShell commands or scripts; to execute them,
either click Run or press F5. The bottom pane will show the results. It’s a full-fledged
PowerShell engine, so you can type any valid PowerShell (actually, you can even type
invalid PowerShell, and you’ll see the errors in the bottom pane). The Beaver Music
PowerShell Console is custom and does not have all the niceties found in the Microsoft
PowerShell console or in the Integrated Scripting Environment (ISE).

The source to this application is available at https://github.com/dfinke/powershell-for
-developers, so feel free to enhance it or build your own. If you do, be sure to post it to
a social coding platform like GitHub so others can use it, change it, and benefit from
it, too.

What makes the Beaver Music Console custom? You should be able to embed it in any
WPF application. The console is a WPF component layered on top of a PowerShell
engine. Plus, it supports a profile; to access it, type notepad $profile and press F5. You
can store PowerShell functions here, and they will be available each time you run the
application. Also, custom variables will be added through both the profile and the C#
code that are not available in other PowerShell consoles like the command line and
PowerShell ISE.

I’ve also injected live instances of the main Beaver Music application. For example, the
WPF application has an album repository. The repository is the in-memory data store
for holding all the albums. I’ve added it using the AddVariable() method.

PSConfig.AddVariable("AlbumRepository", _albumRepository);

This means we can get to the live instance of _albumRepository from the PowerShell
variable $AlbumRepository. Since this is a PowerShell console, we can inspect the meth-
ods on that variable using Get-Member (see Figure 5-3).

Figure 5-2. PowerShell Console button

Beaver Music Application | 61

https://github.com/dfinke/powershell-for-developers
https://github.com/dfinke/powershell-for-developers

Foundational Functions
The live objects of the Beaver Music application are added to the PowerShell engine,
so now we can write PowerShell functions that take advantage of them. I’ve created
five of them, and they follow the PowerShell naming standards of Verb-Noun. You can
find the PowerShell-approved verbs by typing Get-Verb at the command prompt. The
ones I’ve created are Add-Album, Clear-Album, Get-Album, New-Album, and Remove-Album.
They support the CRD of the CRUD model nicely; I did not implement an update
function in PowerShell.

I want to highlight that on three of the five functions I have decorated the parameters
with either ValueFromPipelineByPropertyName or ValueFromPipeline. These two at-
tributes really make PowerShell sing when you’re piping objects between functions.

New-Album

Following is the New-Album function. We associate each of its parameters with Value
FromPipelineByPropertyName, which indicates that the parameter can take values from
a property of the incoming pipeline object that has the same name as the parameter.

function New-Album {

 param(
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]$Name,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]$Artist
)

 Process {
 $album = New-Object BeaverMusic.Album

Figure 5-3. Inspecting the methods on AlbumRepository

62 | Chapter 5: Add PowerShell to Your GUI

 $album.Name = $Name
 $album.Artist = $Artist

 $album
 }
}

New-Album takes two parameters, Name and Artist, and returns a BeaverMusic.Album
object with those properties set (see Figure 5-4). The next example leverages the pipe-
line and the ValueFromPipelineByPropertyName.

Add-Album

Next is the Add-Album function. ValueFromPipeline indicates whether the parameter can
take values from incoming pipeline objects. We need to specify a Process block, which
indicates it will execute once for each $album that is passed from the pipeline. An added
benefit is that we can also use traditional parameter passing.

function Add-Album {
 param(
 [Parameter(ValueFromPipeline=$true)]
 $album
)

 Process {
 $AlbumRepository.SaveAlbum($album) | Out-Null
 }
}

This assumes $AlbumList contains an array of PowerShell objects that have been set up
using the New-Album function. These objects will have two properties, Name and Artist.

ForEach($Album in $AlbumList) {
 Add-Album $Album
}

Figure 5-4. New-Album in action

Beaver Music Application | 63

Next up, I’ll show a different and far simpler syntax that fully leverages PowerShell’s
parameter binding mechanism, which is enabled with the ValueFromPipeline and
Process block approach.

Import-Csv

We have all of PowerShell available to us and we don’t want to build up our list of
albums by hand. Instead, we’ll store a list of them—or download one—in a CSV file.

Artist,Name
"Michael Jackson","Thriller"
"AC/DC","Back in Black"
"Pink Floyd","The Dark Side of the Moon"
"Whitney Houston / Various artists","The Bodyguard"
"Meat Loaf","Bat Out of Hell"
"Eagles","Their Greatest Hits"
"Various artists","Dirty Dancing"
"Backstreet Boys","Millennium"
"Bee Gees / Various artists","Saturday Night Fever"
"Fleetwood Mac","Rumours"
"Shania Twain","Come On Over"
"Led Zeppelin","Led Zeppelin IV"
"Alanis Morissette","Jagged Little Pill"
"The Beatles","Sgt. Pepper's Lonely Hearts Club Band"
"Celine Dion","Falling into You"
"Mariah Carey","Music Box"
"Michael Jackson","Dangerous"
"Celine Dion","Let's Talk About Love"
"Bee Gees","Spirits Having Flown"
"Bruce Springsteen","Born in the U.S.A."
"Dire Straits","Brothers in Arms"
"James Horner","Titanic"
"Madonna","The Immaculate Collection"
"Michael Jackson","Bad"
"Pink Floyd","The Wall"
"Nirvana","Nevermind"

We use the PowerShell cmdlet Import-Csv to read the file. This cmdlet creates an array
of objects, each object having an Artist and Name property. These property names are
determined from the first line of the file (see Figure 5-5).

Next, we’ll pipe this to New-Album. Here is the parameter binding at work—remember,
we set that up using ValueFromPipeline and the Process block. The Import-Csv is trans-
formed into album objects with the correct properties set. Finally, we pipe the results
to Add-Album so they are stored in the album repository and ultimately displayed in the
Beaver Music main window (see Figure 5-6).

Import-Csv .\albums.csv | New-Album | Add-Album

Notice that we do not have to handle looping, end of files, or parameter passing. This
is a very different approach to programming compared to C#, and I can’t stress enough
how much time and effort it saves. In fewer than 50 characters, we’re exercising (testing)
several code paths in our application. With a few more characters, we’ll be clearing and

64 | Chapter 5: Add PowerShell to Your GUI

filtering the list of albums and even pulling data from the Internet to create lists of
albums.

Get-Album and Clear-Album

I wrapped the previous 50 characters in a function and called it Import-Default (Fig-
ure 5-7). I’m now exercising a chunk of my app with 15 characters. I type that in and
add Get-Album, which reads all the albums currently in the repository (Figure 5-8).

Managing Applications Better with PowerShell
Now we’re interacting with live data in a live environment in our application. If we run
this script again, pressing F5, we will have duplicate records. To we’ll add the Clear-
Album at the top in order to work with an empty repository each time.

Let’s use some more built-in PowerShell. We know there are 26 songs in our CSV file,
but we need to make sure that after pushing all that data through the multiple code
paths, we do in fact end up with that number of albums in the repository (Figure 5-9).

Figure 5-5. Import-Csv from albums.csv

Beaver Music Application | 65

So, we clear the repository, import the defaults, retrieve all the albums, and count them
with the PowerShell cmdlet Measure (which is an alias to Measure-Object), and sure
enough, we get the correct count.

One more tweak, and it reads like a unit test (Figure 5-10).

Importing Albums from the Web
Information is stored in many formats as well as many locations. When I am testing
the Beaver Music application, I like to flow lots of different data through it. This exer-
cises different aspects of the applications and lets me figure out how to handle data that
I may not expect. Often it’s the case that the Web has ready-made data sources I can
tap into. I might need to scrub the data a bit, deleting unwanted details, combining
others, and then emitting PowerShell objects with properties so I can let it play into the

Figure 5-6. Importing and adding albums to the repository

66 | Chapter 5: Add PowerShell to Your GUI

pipeline. In this example, I took albums.csv and made it available from my website.
We’ll create a new function, Get-AlbumFromWeb, and then pipe it just the way we did
before, first to New-Album and then to Add-Album, and—bingo!—we get the same number
of albums. This time, I reached out over the Internet, got my data, and displayed it all
from within the same PowerShell console (Figure 5-11).

Function Get-AlbumFromWeb

Interacting with the Web is not native in PowerShell v2 (though it is in v3), so we reach
into the .NET Framework, create a new Net.WebClient, and use the DownloadString()
method.

function Get-AlbumFromWeb {
 $wc=New-Object Net.WebClient
 $url="http://dougfinke.com/PowerShellForDevelopers/albums.csv"

 $wc.DownloadString($url) |
 ConvertFrom-Csv
}

We’re pulling down the contents of a CSV file so we can pipe it to ConvertFrom-Csv
(another built-in PowerShell cmdlet), and now the data is ready to be piped to our
functions that load it into the music repository.

Figure 5-7. These commands update the GUI and the results pane

Beaver Music Application | 67

PowerShell v3

I’ve got PowerShell v3 CTP2 installed, so I can replace my function Get-AlbumFromWeb
with this new one in v3, Invoke-RestMethod, to get the same result with fewer lines of
code (Figure 5-12).

Out-GridView

Out-GridView, mentioned previously in Chapter 3 and Chapter 4 and shown in
Figure 5-13, is a great tool that debuted in PowerShell v2.

Import-Default
Get-Album | Out-GridView

Figure 5-8. Importing and retrieving albums

68 | Chapter 5: Add PowerShell to Your GUI

Bottom line, it is a separate interactive window that supports filtering and sorting. In
PowerShell v3, you can use the –PassThru parameter to select items and have them
passed through to the pipeline. I use it in the custom PowerShell Console to great effect.

Export-ToExcel

Getting data into Excel is extremely helpful for analysis, not to mention it gives us access
to PivotTables, charting, and more. PowerShell doesn’t have anything out the box for
working with Excel, but not to worry. Transforming data is another sweet spot for
PowerShell.

function Export-ToExcel {
 param(

Figure 5-9. Counting the albums

Figure 5-10. Confirming the number of albums added

Beaver Music Application | 69

 $fileName = "$pwd\BeaverMusic.csv"
)

 Get-Album |
 Export-Csv -NoTypeInformation $fileName

 Invoke-Item $fileName
}

The Export-ToExcel function uses one of the foundation functions, Get-Album, to get
all the albums in the repository. It then pipes that data to Export-Csv, another built-in
PowerShell cmdlet. Export-Csv takes an array of objects and saves it to a CSV file. It
gets the names for the data columns from the names of the properties on the object. In
the last line of the script, we call Invoke-Item (yet another built-in PowerShell cmdlet),

Figure 5-11. Importing the albums from a website

Figure 5-12. PowerShell v3 Invoke-RestMethod

70 | Chapter 5: Add PowerShell to Your GUI

passing it the filename used in the export. Invoke-Item performs the default action on
the specified item; in this case, the default action associated with CSV files opens it in
Excel, as shown in Figure 5-14.

Here is all you need to make that happen:

Import-Default
Export-ToExcel

I regularly use the Export-Csv/Invoke-Item technique in both the console and ISE. I find
it an invaluable way to work with data.

Figure 5-13. Dumping live data to Out-GridView

Figure 5-14. Dumping live data to Excel

Beaver Music Application | 71

Interacting with MEF
MEF is Microsoft’s Managed Extensibility Framework; it’s a composition layer
for .NET that improves the flexibility, maintainability, and testability of applications.
The principle purpose of MEF is extensibility—that is, to serve as a “plug-in” framework
in situations when the application developer and the plug-in developer differ and have
no particular knowledge of each other beyond a published interface library.

Another problem space MEF addresses, and one of its major strengths, is discovery.
MEF has a lot of, well, extensible discovery mechanisms that operate on metadata you
can associate with extensions.

$MEFHelper.GetMEFCatalog.Parts | Select DisplayName
$Contract = "BeaverMusic.UI.Shell.AlbumListViewModel"
$MEFHelper.GetExport($Contract).NewAlbumCommand.Execute($null)

In the preceding example, I’ve injected a C# instance of MEFHelper and tied it to the
PowerShell variable MEFHelper. MEFHelper is a C# instance that has a few methods—
for example, the GetExport() method takes a contractName and carries this
implementation:

return ExportProvider.GetExport<object>(contractName).Value;

Using this and the other methods, we can discover which MEF parts are in the catalog,
then retrieve a live instance from the MEF catalog and act on it. In this case, we’re
looking for the Album List View Model; from there, we can get at the command that
launches the new album dialog window (Figure 5-15).

MEF helps provide an extensive, automatable infrastructure for an application. In
addition, being mindful of the development of the static components will enable them
to seamlessly work in PowerShell. Developing your .NET components with an eye
toward PowerShell integration will actually help you create a better-designed infra-
structure.

Discovering the executable commands

So, again, we want to find all of the commands we can execute on the AlbumListView
Model. Using a combination of the $MEFHelper and PowerShell’s Get-Member, we can find
all the properties whose names end in “Command” using the wildcard *Command. (This
is how I found the NewAlbumCommand in the previous example in the live running appli-
cation. Calling the Execute() method then brought up the dialog window, where I could
enter album details.)

$MEFHelper.GetExport('BeaverMusic.UI.Shell.AlbumListViewModel') |
 Get-Member -MemberType Property -Name *Command

 TypeName: BeaverMusic.UI.Shell.AlbumListViewModel

Name MemberType
---- ----------

72 | Chapter 5: Add PowerShell to Your GUI

DeleteAlbumCommand Property
EditAlbumCommand Property
NewAlbumCommand Property
PowerShellConsoleCommand Property

The discovery and application doesn’t end here. We could go further and call methods
and properties on the dialog to set default information; wrapping that in a PowerShell
function is in essence creating a macro for that part of the system. Providing this for
end users can really open up productivity.

Show-NewAlbumDialog

Working with MEF and .NET APIs can be verbose. I’ll create a higher level abstraction
for the previous snippet so it is simpler to use and easier to compose. Plus, this is a step
towards creating a “vocabulary” for the application (Figure 5-16).

function Show-NewAlbumDialog {
 $contractName = "BeaverMusic.UI.Shell.AlbumListViewModel"
 $MEFHelper.GetExport($contractName).NewAlbumCommand.Execute($null)
}

Implementing Performance Counters
We’ve only scratched the surface of PowerShell’s reach. In this example, we’ll tap into
the Windows performance counters using Get-PrivateBytes, which wraps Get-
Counter (a built-in PowerShell cmdlet), showing the amount of memory the application
is using before and after we retrieve music information from Yahoo! using YQL in the
query.

Figure 5-15. Returning MEF catalog parts

Beaver Music Application | 73

"Private Bytes before loading albums from Yahoo $(Get-PrivateBytes)"

Clear-Album
Get-YahooMusic | New-Album | Add-Album

"Private Bytes after loading albums from Yahoo $(Get-PrivateBytes)"

Here is the result:

Get-YahooMusic | New-Album | Add-Album

"Private Bytes after loading albums from Yahoo $(Get-PrivateBytes)"
Private Bytes before loading albums from Yahoo 93548544
Private Bytes after loading albums from Yahoo 95088640

It’s not a far leap from here to exercising code paths in your application and gathering
metrics about memory, CPU, disk activity, and more.

I’ve added the code for Get-PrivateBytes and Get-YahooMusic for reading convenience.

Get-PrivateBytes
function Get-PrivateBytes {
 $counterName="\Process($(Get-CurrentProcessName))\Private Bytes"
 (Get-Counter $counterName).CounterSamples |
 Select -Expand CookedValue
}

Get-Counter comes with PowerShell and can retrieve performance counter data, the
same that you’d see in PerfMon. Here we grab the CounterSamples property and then

Figure 5-16. Using Show-NewAlbumDialog

74 | Chapter 5: Add PowerShell to Your GUI

expand the CookedValue property. This is an extremely useful way to execute different
code paths of your application and then measure your performance counter data.

Get-YahooMusic

Get-YahooMusic uses the WebClient in the .NET Framework, so we can download a
string via the Yahoo API using the Yahoo Query Language (YQL) to query music data.
Data is returned as XML—no problem for PowerShell—and we can transform that
result into an array of objects with the correct properties, Artist and Name, then pipe it
directly into the application.

function Get-YahooMusic {
 $wc = New-Object Net.WebClient
 $url = "http://query.yahooapis.com/v1/public/yql?q=select * from
music.release.popular"
 [xml]$xml = $wc.DownloadString($url)

 $xml.query.results.Release |
 ForEach {
 New-Object PSObject -Property @{
 Artist=$_.artist.name
 Name=$_.Title
 }
 }
}

Once you get going with this powerful approach, you’ll be amazed by the reach you
have for data acquisition. No C# needed!

Get-YahooMusic | New-Album | Add-Album

Figure 5-17 shows the results.

From here, we can go wild with the Yahoo! interface. We can easily add parameters to
the function to be passed to the YQL to subset the data. We can also quickly set up
other functions that use different YQL to retrieve other types of music details.

Wiring a Textbox to Execute PowerShell Code
In the next example, I’ve included the Chinook sample XML music file along with two
PowerShell functions, Get-ChinookData and Import-BeaverMusic. You can find the
Chinook database on CodePlex (http://bit.ly/YPbVd). Run Get-ChinookData, and it will
pull the information from the XML file and display it as albums in the console. You
can also filter the data by artist name. The filtering uses a match, so you don’t need to
be exact. Piping this to the Import-BeaverMusic function will clear the albums in the
main window list view and add the new albums, as shown in Figure 5-18.

The function Get-ChinookData uses the PowerShell XML accelerator to create an XmlDo
cument from the contents of the file ChinookData.xml. Rather than using the built-in
Get-Content cmdlet, I use the ReadAllLines() method on the IO.File namespace. This
is a faster way to read a file.

Beaver Music Application | 75

http://bit.ly/YPbVd

Also, I cache the data by checking for the global variable $global:ChinookData. In the
last line of the script, I filter the data by artist using the Where cmdlet. Note, if
$artist is not specified, all of the data is returned.

function Get-ChinookData ($artist) {
 if(!$global:ChinookData) {
 [xml]$global:ChinookData =
 [IO.File]::ReadAllLines("$pwd\ChinookData.xml")
 }

 if(!$global:artists) {

 $global:artists = @{}
 $global:ChinookData.ChinookDataSet.Artist |
 ForEach {
 $artists.($_.ArtistId)= $_.Name
 }
 }

 $(ForEach($item in $global:ChinookData.ChinookDataSet.Album) {

Figure 5-17. Get-YahooMusic results

76 | Chapter 5: Add PowerShell to Your GUI

 New-Album $item.Title $artists.($item.ArtistId)
 }) | Where {$_.Artist -match $artist}
}

Here we’re looking for any artist with the word “Kiss” in it.

Get-ChinookData Kiss | Import-BeaverMusic

Working in the PreviewKeyDown
Once we’ve written PowerShell scripts and tested them like this, it’d be a shame if we
could use them only at the console. We could really reduce the test matrix by not having
to reimplement reading the XML and adding the albums to the repository in C# code.
Plus, we could save a lot of time reusing those PowerShell functions directly in the
application.

private void Artist_PreviewKeyDown(
 object sender, System.Windows.Input.KeyEventArgs e)
{
 if (e.Key == Key.Enter)
 {
 var script = "Get-ChinookData "
 + Artist.Text + " | Import-BeaverMusic";

 script.ExecutePS();
 e.Handled = true;
 }
}

This is a bit of C# code that reacts to keystrokes in the textbox that sits in the PowerShell
console. When the Enter key is pressed, we construct a PowerShell command as a string.

Figure 5-18. Using Get-ChinookData to import albums

Beaver Music Application | 77

var script = "Get-ChinookData "
 + Artist.Text + " | Import-BeaverMusic";

After we enter “Metallica” (see Figure 5-19) and press Enter, the script variable looks
like this:

"Get-ChinookData Metallica | Import-BeaverMusic"

This line of C# code calls the extension method ExecutePS(). The returned results look
as if we had typed it all in the PowerShell console, and the main window is updated
with the results (see Figure 5-20).

script.ExecutePS();

Figure 5-19. Executing PowerShell from a WPF textbox

Figure 5-20. Results of executing PowerShell from a WPF textbox

78 | Chapter 5: Add PowerShell to Your GUI

This is a fantastic and simple way to expose PowerShell functionality in your .NET
application. There is so much more that you can do here, so I’ll leave it to you for now
to experiment further.

Running Script and Debugging the C#
Here’s a neat trick. Open BeaverMusic.sln, navigate to the BeaverMusic Project, and
edit the AlbumRepository.cs file. Set a breakpoint in the GetAlbums() method. Run the
application, launch the PowerShell console, type Get-Album in the script pane, and press
F5.

You’ll hit the break after running the script and land in the live running application.
You’ll be able to step through the C# code, inspect variables, and view the call stack
just as you would expect. Too cool!

This is very powerful. You can create scripts that quickly put the application into a
reproducible state and then debug it. When bugs are reported, you could potentially
email PowerShell scripts around that reproduce the bugs—which is much more reliable
than reading bug reports. See Figure 5-21 to view debugging in action.

Getting the PowerShell Console in Your App
Loading the PowerShell console in your application is pretty easy. First, download the
code from Github (http://bit.ly/KTZxEG). You can add this method to your app. Then,
either remove or customize the PSConfig.Profile and PSConfig.AddVariable
statements.

Figure 5-21. Debugging in the Beaver Music app

Getting the PowerShell Console in Your App | 79

http://bit.ly/KTZxEG

PSConsole _console;
public void LaunchPowerShellConsole()
{
 PSConfig.AddVariable("AlbumRepository", _albumRepository);
 PSConfig.Profile = "BeaverMusicProfile.ps1";

 _console = new PSConsole();
 _console.Closing +=
 new System.ComponentModel.CancelEventHandler(
 (w, e) => _console = null
);

 _console.Show();
}

PSConfig.Profile
Use the PSConfig.Profile statement to define the name of the PowerShell script that
will be stored in $profile. The console checks if this file exists and evaluates the script
content in the context of the session.

PSConfig.AddVariable
Use the PSConfig.AddVariable statement to inject the object model of your application
into the PowerShell session.

PSConfig.AddVariable("AlbumRepository", _albumRepository);

Here, I use _albumRepository, which is the instantiated object, and I am tying it to the
PowerShell variable name $AlbumRepository. In the launched console, I can access it
with $AlbumRepository. Earlier in this chapter (Figure 5-3), I showed how you can
inspect the methods of this object at runtime. You can inject any kind and any number
of variables into the PowerShell session using the AddVariable() method. In addition,
you can name them whatever you’d like, and once inside the PowerShell console you
can access them by prefixing the name with a $.

The PowerShell Console Code
I’m not going to do a narrative on the code that supports the PowerShell console and
its configuration. It’s about 125 lines, a couple of pages of code. I include it here only
as a reference.

PS.cs
namespace EmbeddedPSConsole
{
 public static class PS
 {
 public static string ExecutePS(this string script)
 {

80 | Chapter 5: Add PowerShell to Your GUI

 var sb = new
 StringBuilder(string.Format("> {0}\r", script));

 powerShell.AddScript(script);
 powerShell.AddCommand("Out-String");
 powerShell.AddParameter("Width", 133);

 try
 {
 var results = powerShell.Invoke();
 if (powerShell.Streams.Error.Count > 0)
 {
 foreach (var err in powerShell.Streams.Error)
 {
 AddErrorInfo(sb, err);
 }
 powerShell.Streams.Error.Clear();
 }
 else
 {
 foreach (var item in results)
 {
 sb.Append(item);
 }
 }
 }
 catch (System.Exception ex)
 {
 sb.Append(ex.Message);
 }

 powerShell.Commands.Clear();
 return sb.ToString();
 }

 static PowerShell _powerShell;

 static PowerShell powerShell
 {
 get
 {
 if (_powerShell == null)
 {
 _powerShell = PowerShell.Create();
 powerShell.Runspace = PSConfig.GetPSConfig;
 if (!string.IsNullOrEmpty(PSConfig.Profile) &&
File.Exists(PSConfig.Profile))
 {
 var script =
 File.ReadAllText(PSConfig.Profile);
 _powerShell.AddScript(script);
 _powerShell.Invoke();
 powerShell.Commands.Clear();
 }
 }

Getting the PowerShell Console in Your App | 81

 return _powerShell;
 }
 }

 private static void AddErrorInfo(StringBuilder sb,
 ErrorRecord err)
 {
 sb.Append(err.ToString());
 sb.AppendFormat("\r\n +{0}",
 err.InvocationInfo.PositionMessage);
 sb.AppendFormat("\r\n + CategoryInfo :{0}",
 err.CategoryInfo);
 sb.AppendFormat("\r\n + FullyQualifiedErrorId :{0}",
 err.FullyQualifiedErrorId.ToString());
 sb.AppendLine();
 }
 }
}

PSConfig.cs
namespace EmbeddedPSConsole
{
 public class PSConfig
 {
 private static string _profile;
 private static Runspace _rs;

 public static Runspace GetPSConfig { get { return rs; } }

 public static string Profile
 {
 get
 {
 return _profile;
 }
 set
 {
 _profile = value;

 AddVariable("profile",
System.IO.Path.Combine(Environment.CurrentDirectory, _profile));
 PS.ExecutePS("$a='Executes so the profile is loaded.'");
 }
 }

 private static Runspace rs
 {
 get
 {
 if (_rs == null)
 {
 _rs = RunspaceFactory.CreateRunspace();
 _rs.ThreadOptions =

82 | Chapter 5: Add PowerShell to Your GUI

 PSThreadOptions.UseCurrentThread;
 _rs.Open();

 return _rs;
 }
 return _rs;
 }
 }

 public static void AddVariable(string name, object value)
 {
 rs.SessionStateProxy.SetVariable(name, value);
 }
 }
}

Summary
So that’s the walkthrough of the Beaver Music application. Surfacing the internals of
your application provides numerous benefits to you, your team, and your client. And
because PowerShell is based on .NET, this process is virtually seamless.

Providing a scripting language for an application is not a new idea. Perhaps you’ve
heard of Visual Basic for Applications (http://bit.ly/44PKAt)? This language is built into
most Microsoft applications. In Microsoft Excel, for example, you can record activities
and then save the VBA scripts for later use.

Companies like Autodesk (http://usa.autodesk.com/), a world leader in 3D design soft-
ware, also offer VBA as an embedded scripting language for their products.

In the gaming industry, Lua (http://www.lua.org/) is the scripting language used by
World of Warcraft developer Blizzard Entertainment for interface customization
(http://www.wowwiki.com/Lua). Blizzard has been using scripting languages to aug-
ment its offerings for decades. We should follow its lead as quickly as we can.

Why is PowerShell preferred over, say, VBA, IronPython, or IronRuby? These are
excellent choices for their dynamic capabilities, but PowerShell is just as programma-
ble, and it is tuned differently. For example:

Get-ChildItem |
 Sort LastWriteTime -Descending |
 Select FullName

Mirroring this in those other languages is a challenge. Extending it as simply as it can
be done in PowerShell? Difficult at best.

PowerShell also provides common functions like sorting, filtering, grouping, format-
ting, outputting, and more. And, given PowerShell’s growing integration with the rest
of the Windows platform, as PowerShell grows, so does your application.

Summary | 83

http://bit.ly/44PKAt
http://usa.autodesk.com/
http://www.lua.org/
http://www.wowwiki.com/Lua

CHAPTER 6

PowerShell and the Internet

PowerShell interacts really well with the Web—it’s able to access files, XML, JSON,
web services, and more directly from the Internet. PowerShell does not have cURL
(http://bit.ly/9mSnL7) or GNU Wget (http://bit.ly/XAhQh) support out of the box, but
because it is an amazing glue language that is deeply integrated with the .NET
Framework, one area where its capabilities really shine is in connecting a set of powerful
underlying components. PowerShell v3 makes this even easier using the cmdlets
Invoke-WebRequest, Invoke-RestMethod, ConvertTo-Json, and ConvertFrom-Json.

It’s interesting to note that, even though PowerShell was envisioned over a decade ago
and v2 was delivered back in 2009, it is able to keep pace with daily development needs.

Taking advantage over the Web of something like JavaScript Object Notation (JSON;
http://bit.ly/1HwvBY), a lightweight data-interchange format, is easy using .NET libra-
ries designed to parse it and present it in a way that’s consumable by PowerShell.

In this chapter, I’ll demonstrate code that will let you pull down differently formatted
information from websites. The amount of public information available is enormous.
Contributed by individuals, companies, and governments, these huge datasets can give
us insight into myriad subjects and can be easily accessed via PowerShell.

Net.WebClient
One cool PowerShell demo I like to give is showing how to pull down the details of a
blog’s RSS feed (http://bit.ly/QWNVt) in just three lines of code:

$url = "http://feeds.feedburner.com/DevelopmentInABlink"
$feed = (New-Object Net.WebClient).DownloadString($url)
([xml]$feed).rss.channel.item | Select title, pubDate

This simple code gives us the following:

title pubDate
----- -------
Using PowerShell to solve Project Euler: Problem 1 Sun, 08 Jan
PowerShell and IEnumerable<T> Sat, 24 Dec

85

http://bit.ly/9mSnL7
http://bit.ly/XAhQh
http://bit.ly/1HwvBY
http://bit.ly/QWNVt

PowerShell, Windows Azure and Node.js Sat, 17 Dec
How to find the second to last Friday in December - Usin... Sat, 17 Dec
PowerShell - Using the New York Times Semantic Web APIs Sun, 04 Dec
My First PowerShell V3 ISE Add-on Sun, 04 Dec
Use PowerShell V3 to Find Out About Your Twitter Followers Thu, 24 Nov

Using the Net.WebClient class from the .NET Framework, the DownloadString()
method retrieves the RSS as a string. Next, using the PowerShell XML accelerator,
[xml], we transform the data in the $feed variable into an XmlDocument and dot-notate
over it to get to the item details. Piping this to Select, we pull out just the title and
pubDate.

Wrapping Code in a PowerShell Function
Good PowerShell script discipline is to wrap snippets like the preceding example in
functions. It helps organize your code and makes it composable.

function Get-WebData {

 param([string]$Url, [Switch]$Raw)

 $wc = New-Object Net.WebClient
 $feed = $wc.DownloadString($Url)

 if($Raw) { return $feed }

 [xml]$feed
}

Get-WebData takes two parameters: the $Url, which is the resource on the site you’re
accessing, and $Raw. If you don’t specify $Raw, Get-WebData tries to accelerate the string
returned from the site as an XmlDocument.

$url = "http://feeds.feedburner.com/DevelopmentInABlink"
(Get-WebData $url).rss.channel.item |
 select title, pubDate

PowerShell v3 adds a number of new functions. Later in this chapter, in “Invoke-Rest-
Method” on page 88, you’ll see one such function that obsoletes a function like Get-
WebData and has more capability.

Reading CSV-Formatted Data from the Web
Retrieving the contents of a file containing data in the CSV format requires the –Raw
parameter on the Get-WebData function:

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.csv"
(Get-WebData $url -Raw) | ConvertFrom-Csv

86 | Chapter 6: PowerShell and the Internet

Here are the results:

Artist Name
------ ----
Michael Jackson Thriller
AC/DC Back in Black
Pink Floyd The Dark Side of the Moon
Whitney Houston / Various artists The Bodyguard
Meat Loaf Bat Out of Hell
Eagles Their Greatest Hits
Various artists Dirty Dancing
Backstreet Boys Millennium

The results can then be piped to the PowerShell cmdlet ConvertFrom-Csv, which trans-
forms that data into an array of PowerShell objects with properties.

Reading XML-Formatted Data from the Web
Retrieving the contents of a file containing XML is easy using the Get-WebData function:

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.xml"
(Get-WebData $url).albums.album

Dot-notating through nodes in the results transforms that data into an array of Pow-
erShell objects with properties.

The Structure of XML Data
Following is a snippet of the XML we read with the Get-WebData call in the preceding
PowerShell script. The structure and the dot notation used in that script enable us to
loop through all the data simply using albums.album.

<albums>
 <album>
 <artist>Michael Jackson</artist>
 <name>Thriller</name>
 </album>
 <album>
 <artist>AC/DC</artist>
 <name>Back in Black</name>
 </album>
<albums>

Here is the XML transformed into PowerShell objects:

Artist Name
------ ----
Michael Jackson Thriller
AC/DC Back in Black

Reading XML-Formatted Data from the Web | 87

US Government Data Sources
Here we’re accessing the US Consumer Product Safety Commission site and pulling
down product recall information stored in an XML format:

$url = "http://www.cpsc.gov/cpscpub/prerel/prerel.xml"
(Get-WebData $url).rss.channel.item

Data acquisition couldn’t be easier:

title : Uni-O Industries Recalls O-Grill Portable Gas Grills
description : The regulator on the grill can leak gas which can ignite
pubDate : Tue, 03 Jan 2012 16:00:00 GMT
link : http://www.cpsc.gov/cpscpub/prerel/prhtml12/12077.html

The US Government has an entire index of publicly available data (http://bit.ly/
kR1wZ) accessible through both web services and XML. Google around for other free
public resources—if you can think of it, someone has put it on the Internet.

Invoke-RestMethod
Invoke-RestMethod is a new PowerShell v3 cmdlet. It simplifies how you can work with
the Web. Invoke-RestMethod is available to you without your having to dot-source other
scripts or import a module.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.csv"
Invoke-RestMethod $url | ConvertFrom-Csv

That means you can deliver a script to another user who has PowerShell v3 installed,
and you’re good to go. Using Get-WebData, you need to either deliver the extra script
file or copy and paste that code into scripts you distribute. Plus, you then own the Get-
WebData function, testing, enhancing, and upgrading.

But wait—there’s more. In the next two sections, we’ll take advantage of Invoke-Rest
Method’s –ReturnType parameter, which defaults to Detect.

Detecting XML
Invoke-RestMethod does a lot for us. Like the (New-Object Net.WebClient).Download
String(), it retrieves the content file. Then it goes a step further, autodetecting that the
content is XML and returning an XmlDocument. The –ReturnType takes three values:
Detect, Xml, and Json.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.xml"
(Invoke-RestMethod $url).albums.album

If you know the type of data you’re going after, you can short-circuit the detection
process.

88 | Chapter 6: PowerShell and the Internet

http://bit.ly/kR1wZ
http://bit.ly/kR1wZ

Detecting JSON
Let’s retrieve the same album data, except now it’s stored in JSON format. We use the
same approach as retrieving the XML data. This time, through, Invoke-RestMethod
detects the JSON format and automatically converts the JSON into an array of objects
of type PSCustomObject with the properties Artist and Name.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.js"
Invoke-RestMethod $url

Following is a sample of the returned data. This output will be identical whether the
XML or JSON format is returned. This means you can meld the same data across
multiple websites with different formats and produce a uniform output. Pretty
powerful!

Artist Name
------ ----
Michael Jackson Thriller
AC/DC Back in Black
Pink Floyd The Dark Side of the Moon
Whitney Houston / Various artists The Bodyguard
Meat Loaf Bat Out of Hell
Eagles Their Greatest Hits
Various artists Dirty Dancing
Backstreet Boys Millennium
Bee Gees / Various artists Saturday Night Fever
Fleetwood Mac Rumours
Shania Twain Come On Over

We’ve now walked through some of the key building blocks for interacting with data
on the Web. These data interchange formats are universal. Next we’ll cover some more
interesting applications of the same approach.

PowerShell and The New York Times Semantic API
With the New York Times Semantic API (http://bit.ly/FIHQ), you get access to the long
list of people, places, organizations, and other locations, entities, and descriptors that
make up the controlled vocabulary used as metadata by the New York Times—some-
times referred to as “Times Tags” and used for Times Topics pages (http://nyti.ms/
ybl23p).

Get-SemanticNYT "Obama" |
 Get-SemanticNYTArticles |
 Where links |
 Select -ExpandProperty article_list |
 Select -ExpandProperty results |
 Select date, title, url |
 Out-GridView

PowerShell and The New York Times Semantic API | 89

http://bit.ly/FIHQ
http://nyti.ms/ybl23p
http://nyti.ms/ybl23p

This script works only in PowerShell v3. We are retrieving the information in JSON
format using the Semantic API and Invoke-RestMethod. Figure 6-1 shows the results
piped to Out-GridView.

Reading The New York Times, part 1
function Get-SemanticNYT {

 param($query = "obama")

 $uri = "http://api.nytimes.com/svc/semantic/v2/"+
 "concept/search.json?query=$query&api-key=$apiKey"

 (Invoke-RestMethod $uri).results
}

Reading The New York Times, part 2
function Get-SemanticNYTArticles {

 param(
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 $concept_name,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 $concept_type
)

 Process {
 $uri = "http://api.nytimes.com/svc/semantic/v2/" +
 "concept/name/$concept_type/$concept_name.json?&" +
 "fields=all&api-key=$apiKey"

Figure 6-1. Retrieving articles from the New York Times

90 | Chapter 6: PowerShell and the Internet

 (Invoke-RestMethod $uri).results
 }
}

The two PowerShell v3 functions used in these examples, Get-SemanticNYT and Get-
SemanticNYTArticles, are simple wrappers used to construct New York Times URLs
correctly. These are passed to the Invoke-RestMethod cmdlet, which does the heavy
lifting of connecting to the site, pulling down the JSON, and transforming it to Pow-
erShell arrays.

Get-SemanticNYTArticles makes use of ValueFromPipelineByPropertyName and the
Process block.

ValueFromPipelineByPropertyName indicates that the parameter can take values from a
property of the incoming pipeline object that has the same name as this parameter. This
means there is a property called concept_name and concept_type emitted from the Get-
SemanticNYT function. When we pipe Get-SemanticNYT to Get-SemanticNYTArticles, we
leverage PowerShell’s parameter binding mechanism. This is one of the “essence ena-
bling” features of PowerShell. Each item from Get-SemanticNYT is automatically passed
through the pipeline, and the properties concept_name and concept_type are bound to
the same-named parameters in Get-SemanticNYTArticles.

The Process block handles iterating over the data piped, doing the move next and
checking for end of stream. This frees us up to create solutions and worry less about
the mechanics of passing parameters properly.

In less than three-quarters of a page of PowerShell v3 code, we’re querying web-based
articles from the New York Times via its Semantic API, handling a web REST
interaction, transforming JSON to PowerShell (.NET) objects, and finally displaying
the results in a WPF GUI.

These are powerful components that developers can easily add to their toolbox.

New-WebServiceProxy
The New-WebServiceProxy cmdlet creates a web service proxy object that lets you use
and manage the web service in Windows PowerShell. Let’s take a look next at how we
can leverage this tool to read some ticker information about stock symbols.

Stock WebService
There are many sites available that provide stock quotes. This means we need to
navigate to the desired page, type in the symbol, press Enter, and then read the infor-
mation. What if I want to check several symbols? What if I check stocks every few
minutes? Maybe I want to save the stock information details. Even better, say I want
to do some quick calculations on the fly. We’ll use a web service to get this done. Web
services are typically application programming interfaces (APIs) that are accessed via

New-WebServiceProxy | 91

hypertext transfer protocol (HTTP) and executed on a remote system hosting the re-
quested services. Web services tend to fall into one of two camps: big web services and
RESTful web services.

function Get-Quote {
 param(
 [Parameter(ValueFromPipeline=$true)]
 [string[]]$symbol,
 [Switch]$Raw
)

 Begin {
 $url = "http://www.webservicex.net/stockquote.asmx?wsdl"
 $proxy = New-WebServiceProxy $url
 }

 Process {
 $result = $proxy.GetQuote($symbol)

 if($Raw) { return $result }

 [xml]$result
 }
}

"IBM", "AAPL", "GM", "GE", "MSFT", "GOOG" |
 Get-Quote |
 ForEach {$_.StockQuotes.Stock} |
 Format-Table

In this example, we easily retrieve data for several stock symbols in a single call.

The New-WebServiceProxy, inside the Begin block, executes only the first time through
the function and creates a web service proxy object that lets you use and manage the
web service in PowerShell.

Then, in the Process block, executed for each item in the pipeline, the GetQuote()
method is called, passing in the $symbol. GetQuote returns an XML data source, so using
the [xml] accelerator returns an XmlDocument for each symbol that is located.

Dig a Little Deeper
New-WebServiceProxy creates a web service proxy object that lets you use and manage
a web service in PowerShell. It retrieves the Web Service Definition Language (WSDL),
and on the fly generates and compiles an object that represents all the methods and
parameters that you can access for that service.

The preceding example used the GetQuote() method, which takes a symbol—a string.
For example, IBM returns an XML string containing lots of good information about that
stock symbol.

92 | Chapter 6: PowerShell and the Internet

Here is the shape of the XML returned by the GetQuote() method—a Stock node inside
a StockQuotes node:

<StockQuotes>
 <Stock>
 <Symbol>IBM</Symbol>
 <Last>193.35</Last>
 <Date>2/7/2012</Date>
 <Time>4:01pm</Time>
 <Change>+0.53</Change>
 <Open>192.45</Open>
 <High>194.14</High>
 <Low>191.97</Low>
 <Volume>3432953</Volume>
 <MktCap>224.3B</MktCap>
 <PreviousClose>192.82</PreviousClose>
 <PercentageChange>+0.27%</PercentageChange>
 <AnnRange>151.71 - 194.90</AnnRange>
 <Earns>13.06</Earns>
 <P-E>14.76</P-E>
 <Name>International Bus</Name>
 </Stock>
</StockQuotes>

Then we pipe the XML to ForEach to pull out the actual data from $_.Stock
Quotes.Stock:

Symbol Last Date Time Change Open
------ ---- ---- ---- ------ ----
IBM 180.52 1/19/2012 4:02pm −0.55 181.79
AAPL 427.75 1/19/2012 4:00pm −1.36 430.03
GM 24.82 1/19/2012 4:00pm +0.31 24.65
GE 19.15 1/19/2012 4:00pm +0.13 19.03
MSFT 28.12 1/19/2012 4:00pm −0.11 28.15
GOOG 639.57 1/19/2012 4:00pm +6.66 640.97

Being able to get a proxy to a web service in a single line of PowerShell enables many
scenarios—for example, quick integration testing. Here you could easily query stock
symbols with known values and test to see if they are correct. Don’t forget, once the
data is pulled from the web service and in the pipeline, you can pipe it or transform it
to another data format and save it to disk for later use.

Invoke-WebRequest
The Invoke-WebRequest cmdlet is another workhorse for integrating the Web into Pow-
erShell. It lets you grab web pages and capture data about them; for example, when it’s
used with the AllElements property, you can search for HTML elements with a certain
class name.

Again, Invoke-WebRequest is available out of the box with PowerShell v3. That means
you can write scripts that mash up, scrape, and do significant text manipulation of any
of your favorite websites. It makes capturing and scrubbing data a simple operation.

Invoke-WebRequest | 93

Next up, I present a couple of scripts using this cmdlet to query Google and Bing about
the status of a flight. What is really cool is how few lines of code we need to do this.
This is another good example of how PowerShell’s composability can really light the
way for useful, interesting applications.

One key addition to PowerShell v3 is the workflow keyword. Underneath, it is using
Microsoft Workflow 4.0. In addition, the ForEach sprouts a new parameter in this con-
text, -Parallel. Gluing together parallel workflow capabilities and easy web integration
makes a powerful recipe for data acquisition.

PowerShell and Google
Say we want to find out the flight status for Delta Air flight 269; we surf to Google and
type flight status for dl 269 (see Figure 6-2).

function Get-FlightStatus {
 param($query="dl269")

 $url = "https://www.google.com/search?q=flight status for $query"
 $result = Invoke-WebRequest $url
 $result.AllElements |
 Where Class -eq "obcontainer" |
 Select -ExpandProperty innerText
}

Get-FlightStatus

In the preceding code, we type Get-FlightStatus at a command line and scrape the
Google page using Invoke-WebRequest. These results have been truncated for
readability:

Flight Status for Delta Air Lines 269

Figure 6-2. Results of the flight status

94 | Chapter 6: PowerShell and the Internet

On-timearrives in 25 minutes
DepartureJFK8:04am(was 8:05am)Terminal 3
New YorkJan 20Gate 3

Updated 3 minutes ago by flightstats.com - Details

The key to scraping pages this way is to find an element that can be as close to uniquely
identified as possible. By navigating to the page you want to scrape and clicking “View
Source,” you can look at the resulting HTML and figure out if that is possible. Looking
at the results from Google, I saw that the flight results were in a div with a class name
obcontainer. That translates to Where Class –eq "obcontainer".

The target HTML

Using Invoke-WebRequest with the where cmdlet makes quick work of scraping websites.
Here is the HTML I searched to find a class name equal to obscontainer:

<div class="obcontainer" style="padding-bottom:5px;">
 <div>
 <div>
 <table style="width:34.24em;border-top:0"
 <tr>
 <td >Flight Status for Delta Air Lines 269</td>
 </tr>
 </table>
 </div>
 <div>
 <table >
 <tr>
 <td>Updated 3 minutes ago by flightstats.com - <a href=
 class=" fl">Details</td>
 </tr>
 </table>
 </div>
 </div>
</div>

So, you retrieve the web page with Invoke-WebRequest, filter AllElements by the “key”
you are looking for, and select the inner text, and you’re done.

Not all web pages will be this simple, but it is worth investing a few minutes to poten-
tially unlock a data mining opportunity.

PowerShell and Bing
Here is the same query from the preceding Google example, now in Bing:

function Get-FlightStatus {
 param($query="dl269")

 $url = "http://bing.com?q=flight status for $query"

 $result = Invoke-WebRequest $url

Invoke-WebRequest | 95

 $result.AllElements |
 Where Class -eq "ans" |
 Select -First 1 -ExpandProperty innerText
}

The two differences are the “key” to filter on in the Where cmdlet, and the –First 1
parameter found on the Select cmdlet, which we need to use because Bing returns
several answers and we want the first one.

Flight status for Delta 269
Landed early · Jan 20, 2012
From: New York (JFK) 08:04 AM (was 08:05 AM) · gate 3, terminal 3 · map
To: Atlanta (ATL) 10:33 AM (was 10:45 AM) · gate C51, terminal N · map
Other flight segments · TLV-JFK

Data provided by Bing Travel · Source: www.flightstats.com, 2 minutes ago

Overall, this is a very clean and simple approach for querying search engines and pulling
out just the details you need. Even better, it is not limited to just query engines—you
can use it for any public data on the Web.

PowerShell and the Twitter API
As you probably already know, Twitter is an information network and communication
mechanism that produces more than 200 million “tweets” (status updates) a day. The
Twitter platform offers access to that data through its APIs. Each API represents a facet
of Twitter, and allows developers to build upon and extend their applications in new
and creative ways.

By tapping into the Twitter search API to search for one of my favorite topics—
PowerShell—and then leveraging the Get-WebData function presented earlier, we can
easily extract the title and author of tweets containing the word “PowerShell.”

. .\Get-WebData.ps1
$result = Get-WebData "http://search.twitter.com/search.rss?q=PowerShell"
$result.rss.channel.item |
 Select title, author

The resulting XML returned by the Twitter search API is far richer than just the
title and author fields, however. It contains a link to the image the author uses, the
date of the tweet, a link to the original tweet, and more. Plus, this is only the search
API. Twitter supports many more APIs; for an example, check out my blog post “Use
PowerShell V3 to Find Out About Your Twitter Followers” (http://bit.ly/tJPhoO).

title author
----- ------
I heart #Powershell. What else ... awanderingmind@twitter.com (Jo...
I hate you people. No, not you.... billinkc@twitter.com (Bill Fel...
#PowerShell Mailbox name not al... ihunger@twitter.com (Jim Hofer)
nothing like writing #PowerShel... Josh_Atwell@twitter.com (Josh ...
#PowerShell Granting permission... ihunger@twitter.com (Jim Hofer)

96 | Chapter 6: PowerShell and the Internet

http://bit.ly/tJPhoO

NewPost:: PowerShell, Active Se... jbmurphy@twitter.com (Jeffrey ...
Configure Git in PowerShell So ... JohnBubriski@twitter.com (John...
Article #5 of 7 for Hey Scripti... proxb@twitter.com (Boe Prox)
Get Powershell to wait for an S... stackfeed@twitter.com (StackOv...
RT @PowerShellGroup: UK PowerSh... OliverZofic@twitter.com (Olive...
GPP Registry Item Level Targeti... AGoodies@twitter.com (A Goodies)
wadehel is windows powershell m... pimapimapima@twitter.com (Adri...
RT @PowerShellGroup: UK PowerSh... ScriptingGuys@twitter.com (MSF...
RT @toenuff: Revert the #power... ScriptingGuys@twitter.com (MSF...
The future of Exchange administ... alexandair@twitter.com (Aleksa...

Many websites support similar APIs, and I strongly encourage you to investigate
PowerShell as a way to rapidly tap into them, which will open up opportunities to
quickly mine data from a single source or across many.

PowerShell v3 ups the game further by natively supporting cmdlets like Invoke-WebRe
quest and Invoke-RestMethod, which let me concentrate on the essence of data inter-
action across heterogeneous data stores on the Web.

Unlike ceremonial versions of web interaction—where I need to handle requests,
responses, data conversions, and more—with Invoke-RestMethod, I pass a URL, and if
it is XML or JSON on the other end, I don’t even know it. I’m simply working with an
array of objects with properties; piping them to other PowerShell cmdlets for sorting,
grouping, slicing, and dicing; or using the intermediate results to do lookups through
other APIs or on completely different sites.

Summary
We’ve covered a lot in this chapter. You saw how easy it is to integrate PowerShell with
the Web to pull down the contents of files in three different formats: CSV, XML, and
JSON. Then, you learned how to convert them on the fly to .NET (PowerShell) objects
and did some analysis on the files. Finally, we pulled down entire web pages and filtered
out key details based on HTML tag names.

Now you have to check out the next chapter, where I’ll expand on the Twitter code
and introduce you to WPF programming using only PowerShell. That’s right—no
XAML1, C#.

1. XAML, or the Extensible Application Markup Language, is a declarative XML-based language created
by Microsoft and is used for building WPF applications.

Summary | 97

CHAPTER 7

Building GUI Applications in
PowerShell

When Jeffrey Snover was showing PowerShell (then Monad) around Microsoft, one of
the responses he received was, “A new command line? Snover, what about Windows
don’t you get?” In fact, Windows Server 8 is all about not running graphical user in-
terfaces (GUIs). It can be run as a headless server.

Want to follow along with the examples in this chapter? Download
ShowUI and you can try out the examples as you go: http://showui.co
deplex.com/.

ShowUI is a PowerShell module to help build WPF user interfaces in
script. It makes the complicated world of WPF easy to use in PowerShell.
You can use ShowUI to write simple WPF gadgets, quick frontends for
your scripts, components, and full applications.

Why a Chapter About GUIs?
So why a whole chapter devoted to GUIs, you ask? Great question! First off, GUIs are
optimal in many scenarios. For example, sometimes users want to see a list of infor-
mation that has several attributes. They don’t want to see those details whizzing by on
the console; they want to capture it in a screen to be able to vertically and horizontally
scroll through it.

The challenge with GUIs comes when users need to do a task over and over, clicking
through a number of screens, entering info, clicking some more, type, click, type,
clickety, click, click. They’re out!

Ultimately, as developers we need to deliver what the user wants, and that deliverable
is sometimes a GUI. Being the lazy coder, I like to get my job done in the fewest lines
of code possible. It’s quicker, easier, less error prone, simpler to maintain, and agile.

99

http://showui.codeplex.com/
http://showui.codeplex.com/

Answer: Two Lines of Code
How many lines of PowerShell are needed to create a complete working WPF
application? Two! Here’s the code that yields the result shown in Figure 7-1.

Import-Module ShowUI
Label "Hello World" -FontSize 42 -Show

It’ll take you more using statements, an IDE, and a compilation step to get the equiv-
alent in C#. Here, you press Enter at the end of the second line of PowerShell code and,
boom, you’re done—a running WPF app.

I’ll be going deeper into building PowerShell WPF applications in this chapter, but if
you want another angle on using PowerShell to develop WPF applications, check out
my MSDN article, “Secrets to Building a WPF Application in Windows PowerShell,”
at http://msdn.microsoft.com/en-us/magazine/hh288074.aspx.

In this chapter, you’ll see a couple of full WPF applications leveraging ShowUI (which,
as noted earlier, is a PowerShell module to help build WPF user interfaces in script): a
Twitter search GUI and a video player. First, let’s code up a GUI using WinForms.

PowerShell and WinForms
PowerShell works with WinForms out of the box. Figure 7-2 shows a simple WinForms
GUI with a button; click the button, and the date will print in the console.

This PowerShell script has some lines of code worth noting. First up, a PowerShell
session does not automatically load the System.Windows.Forms DLL, so we use the Add-
Type -AssemblyName System.Windows.Forms method to do so.

If you use PowerShell and WinForms this way, there is no built-in editor to lay out your
forms, so you need to manually handle position, sizing, and event hookup.

Figure 7-1. ShowUI Hello World

Figure 7-2. PowerShell WinForms

100 | Chapter 7: Building GUI Applications in PowerShell

http://msdn.microsoft.com/en-us/magazine/hh288074.aspx

SAPIEN Technologies has a tool called PrimalForms (http://www.sapien
.com/software/primalforms) that works like the Visual Basic Forms
Editor. It lets you drag and drop controls on a designer, hook up events
by double-clicking the controls, and so on. The final result is all Pow-
erShell.

After creating the form, we set its size and start position. Then we create a Windows
button, wire up the click event by calling the add_click() method, and pass it a Pow-
erShell script block. We let the button’s size take the default and then we add the button
to the form’s Controls collection. Finally, we call the ShowDialog() method on the form,
and it displays on the screen.

Add-Type -AssemblyName System.Windows.Forms

$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size @(200,100)

$form.StartPosition = "CenterScreen"

$btn = New-Object System.Windows.Forms.Button
$btn.add_click({Get-Date|Out-Host})
$btn.Text = "Click here"

$form.Controls.Add($btn)
$drc = $form.ShowDialog()

Using WinForms to build GUIs has its advantages. It’s available on any Windows OS,
so you could email a script to someone, and that person could run it and have a GUI
ready to go.

Next up, I’ll use the ShowUI module, which provides abstractions you cannot achieve
through pure markup.

PowerShell, ShowUI, and the Twitter API
Being able to search social media sites quickly provides a multitude of benefits. In fact,
there are companies that do this all day long, capturing details from Twitter, Facebook,
LinkedIn, and more. After collecting all of this data, they run analytics to determine
sentiment toward a product or service (sentiment analysis). While we won’t get into
specific analysis here, I’ll show you how to query Twitter using its search API, process
the XML results so we can easily work with the data in PowerShell, and then display it
in a GUI. In less than a page of PowerShell script, we can glue together WPF and the
results of a Twitter search!

PowerShell, ShowUI, and the Twitter API | 101

http://www.sapien.com/software/primalforms
http://www.sapien.com/software/primalforms

When reading over this approach, keep in mind that this is not just for
Twitter or social media sites with XML feeds. For example, you could
use PowerShell v3 and change the search.rss to search.json. This returns
a JSON string, and in PowerShell v3, you could pipe it to ConvertFrom-
Json. This would transform the data into PowerShell objects with prop-
erties that you could wire up into the ShowUI WPF application. Most
sites on the Web today return either XML or JSON. They’re just low-
hanging fruit, waiting for a custom interface or a mashup.

Now take a look at the Search-Twitter function using the search API. It accelerates the
XML into an XmlDocument using [xml] and then dot-notates down to the item in the
XML feed.

function Search-Twitter ($q = "PowerShell") {
 $wc = New-Object Net.Webclient
 $url = "http://search.twitter.com/search.rss?q=$q"
 ([xml]$wc.downloadstring($url)).rss.channel.item
}

Invoking the function Search-Twitter returns an array of objects, each with 32 prop-
erties on it. We select just two for now and look at the results.

Search-Twitter | select pubDate, title

The following is what we get back from the search for the two fields we selected. This
is useful if we wanted to save this and then query it later, but there are far more inter-
esting fields in that data—the Twitter user’s image, for example—so next let’s make a
little Twitter GUI app instead of just looking at the raw data in this format.

pubDate title
------- -----
Fri, 10 Feb 2012 00:43:33 +0000 Windows PowerShell(TM) Scripting Guide
Fri, 10 Feb 2012 00:42:17 +0000 #PowerShell Use Tab Expansion in the Po
Fri, 10 Feb 2012 00:40:56 +0000 @energizedtech Captain! She canny take
Fri, 10 Feb 2012 00:37:56 +0000 Shout out to @ToddKlindt "the PowerShel
Fri, 10 Feb 2012 00:31:38 +0000 #PowerShell February PowerShell group m
Fri, 10 Feb 2012 00:29:57 +0000 RT @mattn_jp: powershell???????????????
Fri, 10 Feb 2012 00:22:32 +0000 @robinmalik: "Very excited to play arou
Fri, 10 Feb 2012 00:22:24 +0000 It seems like it is certainly going to
Fri, 10 Feb 2012 00:21:00 +0000 #PowerShell Using PowerShell v3 to cons
Fri, 10 Feb 2012 00:16:23 +0000 ????????···?????···PowerShell?????···??
Fri, 10 Feb 2012 00:16:16 +0000 Windows PowerShell v1.0: TFM, 2nd Editi
Fri, 10 Feb 2012 00:10:23 +0000 #PowerShell Windows PowerShell for Shar
Fri, 10 Feb 2012 00:08:55 +0000 Any #Powershell gurus out there that ca
Fri, 10 Feb 2012 00:08:51 +0000 ???: powershell?get-help???firefox?????
Fri, 10 Feb 2012 00:00:38 +0000 RT @ScriptingWife: R U ready for some #

102 | Chapter 7: Building GUI Applications in PowerShell

A Twitter GUI Application
This is a simple but full-blown WPF application interacting with the Twitter search API.

As I’ve mentioned before, ShowUI (http://showui.codeplex.com/) is a PowerShell mod-
ule for building WPF user interfaces in script. You can use it to write simple WPF
gadgets, quick frontends for your scripts, components, and full applications.

ShowUI is a combined effort of James Brundage, former member of the
PowerShell team and founder of Start-Automating (http://start-automat
ing.com/), and Joel Bennett (http://huddledmasses.org/) fellow
PowerShell MVP. (I’m a developer on that open source project, too.)
Back in late 2008, I blogged about Ruby Shoes and the start of a Pow-
erShell version for it (http://bit.ly/KhZR3L). Ruby Shoes (http://shoesrb
.com/) is a cross-platform toolkit for writing graphical apps. I liked its
domain-specific language (DSL) approach and began to put together a
version for WinForms. Joel commented on that post, saying he was
doing the same for WPF, which became PowerBoots (http://bit.ly/
DZiK3). On or about that time, James was surfacing his work on his
WPF approach, Windows Presentation Foundation PowerShell ToolKit
(WPK). WPK is a hat tip to Tcl/Tk, a popular UNIX scripting tool, and
was released as part of PowerShellPack (http://bit.ly/dFVpfL). Check it
out—it has other great resources. ShowUI is the evolution of the two
PowerShell modules PowerBoots and WPK.

Compared to C# and XAML, there is much less to learn in order to use PowerShell and
ShowUI. Plus, within just a few hours of learning ShowUI, you can create interesting
and useful user interfaces.

PowerShell allows a higher-level abstraction than system languages, enabling more
rapid application development. ShowUI enables the same level of abstractions for cre-
ating WPF user interfaces.

The Code
These 29 lines of PowerShell (less than a page of code) produce Figure 7-3. The Search-
Twitter function returns an array of PowerShell objects with properties from the
Twitter query. From that data, we extract the text of the tweet and the URL pointing
to the Twitter user’s profile image.

If you look closely at the PowerShell code here, you’ll see no loops at all. ShowUI
supports WPF’s data binding capabilities as well as its templating features.

Import-Module .\ShowUI

function Search-Twitter ($q) {
 $wc = New-Object Net.Webclient
 $url = "http://search.twitter.com/search.rss?q=$q"

A Twitter GUI Application | 103

http://showui.codeplex.com/
http://start-automating.com/
http://start-automating.com/
http://huddledmasses.org/
http://bit.ly/KhZR3L
http://shoesrb.com/
http://shoesrb.com/
http://bit.ly/DZiK3
http://bit.ly/DZiK3
http://bit.ly/dFVpfL

 ([xml]$wc.downloadstring($url)).rss.channel.item | select *
}

$ws = @{
 WindowStartupLocation = "CenterScreen"
 Width = 500
 Height = 500
}

New-Window @ws -Show {
 ListBox -Background Black -ItemTemplate {
 Grid -Columns 55, 300 {
 Image -Column 0 -Name Image -Margin 5
 TextBlock -Column 1 -Name Title `
 -Margin 5 `
 -Foreground White `
 -TextWrapping Wrap
 } | ConvertTo-DataTemplate -Binding @{
 "Image.Source" = "image_link"
 "Title.Text" = "title"
 }
 } -ItemsSource (Search-Twitter PowerShell)
}

Figure 7-3. PowerShell, ShowUI, and the Twitter API

104 | Chapter 7: Building GUI Applications in PowerShell

ShowUI uses a code generation technique that wraps all the WPF presentation com-
ponents and their parameters so they fit seamlessly into the PowerShell ecosystem. In
this code, we’re accessing five WPF controls: Window, ListBox, Grid, Image, and Text
Block.

We set the results of the Twitter search to the ItemsSource property of the ListBox and
then let data binding take care of the rest. The ConvertTo-DataTemplate “reaches” into
the data context of the control in order to find the image_link and title properties.

To do the styling, we use the –ItemTemplate parameter and ConvertTo-DataTemplate
function. –ItemTemplate takes a PowerShell script block, in which we define a WPF
Grid with two columns. The first column will hold an Image control, which shows the
Twitter user’s picture. If you set the source of the Image control to a URL, the picture
is automatically fetched and displayed. The second column holds the TextBlock where
the actual tweet message is displayed.

The WPF data templating model provides you with great flexibility to
define the presentation of your data. WPF controls have built-in func-
tionality to support the customization of data presentation. They give
you a very flexible and powerful solution to replace the visual appear-
ance of a data item in a control like ListBox.

ShowUI integrates with this styling functionality via the –ItemTemplate
parameter and ConvertTo-DataTemplate function.

We pipe the Grid “construction” to the ConvertTo-DataTemplate function that ships
with ShowUI. This is where the controls are data bound to the Twitter results created
in the DataContext parameter via the –binding parameter.

If you inspect the raw data returned from Search-Twitter, you’ll see that there are in
fact two properties on every object, one named image_link and the other text.

Running the script bubbles up all the data into the ListBox, which is hosted by the New-
Window, and we get the neat Twitter application in Figure 7-3.

ShowUI Video Player
ShowUI ships with a number of great examples, and both James Brundage and Joel
Bennett have blogged and recorded videos demoing ShowUI in action. Definitely check
out these links to the videos:

• My ShowUI videos

• Show CodePlex page for videos

• YouTube

ShowUI Video Player | 105

http://vimeo.com/user7416310/videos
http://showui.codeplex.com/documentation
http://bit.ly/MhcZbG

One more simple and powerful app that you can code is a GUI video player that sup-
ports drag and drop and runs as a standalone application with only a handful of script.

Import-Module ShowUI

New-Window -AllowDrop -On_Drop {

 $VideoPlayer.Source = @($_.Data.GetFileDropList())[0]
 $VideoPlayer.Play()
} -On_Loaded {

 $VideoPlayer.Source = Get-ChildItem -Path `
 "$env:Public\Videos\Sample Videos" -Filter *.wmv |
 Get-Random | Select-Object -ExpandProperty Fullname
 $VideoPlayer.Play()
} -On_Closing {

 $VideoPlayer.Stop()
} -Content {

 New-MediaElement -Name VideoPlayer -LoadedBehavior Manual
} -AsJob

New-Window creates a WPF window, and then –AsJob runs the window as a background
job. Launching this window from the PowerShell console runs this application without
blocking the command line from doing more work.

The window gets the video player embedded in the –Content parameter, and it is named
VideoPlayer. ShowUI makes that name accessible as $VideoPlayer. You can see this
name being used in the rest of the script for properties being set, Source, and methods
being called, Play() and Stop().

The –AllowDrop parameter enables the window as a drop target. You can drag other
videos to the surface and drop them, and they will play. The –On_Drop parameter wires
up the drop event, reads and sets the file dropped to the video player, and plays it.

The -On_Loaded event is called when the window initially loads and a random .wmv file
is selected to be played. Finally, when the window is closed, the –On_Closing event is
called, and Stop() terminates the playing video.

Notice how it takes more space to explain a ShowUI application than it does to write it!

Summary
GUIs are fundamentally gluing applications; they don’t really create new functionality,
but rather they make connections between controls and the internal functions of an
application.

Scripting languages excel at gluing. ShowUI connects the underlying components of
WPF and PowerShell to create an environment of exceptional power. Using PowerShell

106 | Chapter 7: Building GUI Applications in PowerShell

this way is not limited to wrapping WPF and GUI components, however; with this
approach, you can develop applications five to ten times faster.

PowerShell is not a replacement for a system programming language or vice versa. Each
is suited to solve different problems. Finding that division of labor and combining their
strengths leads to more rapid development and more flexible approaches.

Summary | 107

CHAPTER 8

DLLs, Types, Properties, Methods, and
Microsoft Roslyn

How do you learn to work with PowerShell, the .NET Framework, your .NET DLLs,
third-party .NET DLLs, and other Microsoft and non-Microsoft libraries? In this chap-
ter, I’ll step you through how to load DLLs and discover the types, properties, and
methods that you can call during a live interactive session.

When you’re working with the .NET Framework, your best friend is the
MSDN Library (http://msdn.microsoft.com/en-us/library/). It’s an essen-
tial source of information for developers using Microsoft tools, prod-
ucts, technologies, and services.

For example, if I search for “programmatically put data on the clipboard
MSDN,” I find the page “Clipboard Class (System.Windows)” (http://
bit.ly/GJuNcS). This page details all the information I need—specifically
the assembly needed to load (PresentationCore), the fully qualified type
name (namespace and class) needed to call System.Windows.Clipboard,
and a list of the methods that are available to use.

Sending Text to the Clipboard
To kick this section off, we’ll create a PowerShell function to put the text “Hello World”
on the clipboard. I’ll show you how to use Get-Member to list out method names at the
command line so you can discover them in your current session. This is a convenient
technique that can speed development when you need to find out what methods exist
on an object you are using.

109

http://msdn.microsoft.com/en-us/library/
http://bit.ly/GJuNcS
http://bit.ly/GJuNcS

For this example, if you are using PowerShell v2 you’ll need to start with
the command-line switch –STA; this starts the shell using a single-
threaded apartment. While the PowerShell v3 apartment state defaults
to STA, the PowerShell v2 apartment state defaults instead to MTA
(multi-threaded apartment).

We need this switch because we’ll be using the clipboard from WPF,
and it requires an STA thread.

For more background, check out “Why does WPF require a STAThread
attribute to be applied to the Main method?” at http://bit.ly/GCBfCQ.

Now, let’s get started. First, we’ll load up the WPF PresentationCore DLL into our
current PowerShell session.

Add-Type -AssemblyName PresentationCore

Once this is done, we’ll use Get-Member to find all the static methods on the clipboard.
We can do this with any .NET assembly that is loaded into the PowerShell session.

[System.Windows.Clipboard] | Get-Member -Static

You need to wrap the type System.Windows.Clipboard in brackets ([]), as it denotes a
type. That line of code produces this data:

 TypeName: System.Windows.Clipboard

Name MemberType Definition
---- ---------- ----------
Clear Method static System.Void Clear()
ContainsAudio Method static bool ContainsAudio()
ContainsData Method static bool ContainsData(string format)
ContainsFileDropList Method static bool ContainsFileDropList()
ContainsImage Method static bool ContainsImage()
ContainsText Method static bool ContainsText(), static bool
GetAudioStream Method static System.IO.Stream GetAudioStream(
GetData Method static System.Object GetData(string for
GetDataObject Method static System.Windows.IDataObject GetDa
GetFileDropList Method static System.Collections.Specialized.S
GetImage Method static System.Windows.Media.Imaging.Bit
GetText Method static string GetText(), static string
IsCurrent Method static bool IsCurrent(System.Windows.ID
SetAudio Method static System.Void SetAudio(byte[] audi
SetData Method static System.Void SetData(string forma
SetDataObject Method static System.Void SetDataObject(System
SetFileDropList Method static System.Void SetFileDropList(Syst
SetImage Method static System.Void SetImage(System.Wind
SetText Method static System.Void SetText(string text)

The last method in the list, SetText(), is what we’re after. We combine this all together,
and we can put text on the clipboard.

[System.Windows.Clipboard]::SetText("Hello World")

110 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

http://bit.ly/GCBfCQ

Now we can launch Notepad and press Ctrl-V to paste the text. Better yet, we can wrap
it in a function that can accept the parameter either from the pipeline or normally.

function Out-Clipboard {
 param(
 [Parameter(ValueFromPipeline=$true)]
 [string]$text
)

 Process {
 [System.Windows.Clipboard]::SetText($text)
 }
}

Now, we can set text to the clipboard with either of these approaches:

Out-Clipboard (Get-Date)
Or
Get-Date | Out-Clipboard

As I was writing this chapter, a good friend and fellow PowerShell
expert, Trevor Sullivan, posted “Copy Filenames to Clipboard with
PowerShell” to his blog (http://bit.ly/xncc7c). Check out his implemen-
tation. You can specify a path, and the script iterates over files, selects
each full name, collects them as a string array, and then copies them to
the clipboard. Creative idea! Plus, PowerShell makes it easy to create
solutions like this:

Copy-FileNamesToClipboard -Path c:\temp\docs

Transcoding C# to PowerShell
Here we’re going to use Jonathan Creamer’s C# approach (http://bit.ly/zsAjpL) to con-
suming StackOverflow’s JSON API but do it in PowerShell. I find this useful because
I can spot snippets of C# and transform them to PowerShell quickly, and then I have
the full breadth and reach of PowerShell to make this stuff sing.

I did a PowerShell video back in 2008 showing how to count the number
of characters in an array of strings, first in C# and then whittling the
code down to a single line of PowerShell. It’s seven minutes worth
watching and communicates the ceremony versus essence principle very
nicely. Check it out here: http://bit.ly/GEejQW.

First, the C#
Jonathan wanted to get information about a StackOverflow user, badge, answer, and
view counts for starters. If you check out his post, he shows the resulting JSON from
the query plus the C# code that requests the data from the URL, unzips it with GZip,

Transcoding C# to PowerShell | 111

http://bit.ly/xncc7c
http://bit.ly/zsAjpL
http://bit.ly/GEejQW

and then uses JSON.NET to deserialize the result into a C# object so it can be easily
processed.

I want to focus on the retrieval of Jonathan’s solution. The following C# snippet returns
the JSON for the user 110865 (that’s me). But first, here is an abbreviated view of the
returned JSON:

 {
 "user_id": 110865,
 "display_name": "Doug Finke",
 "reputation": 1696,
 "website_url": "http://dougfinke.com/blog/",
 "location": "New York, NY",
 "about_me": "Software Developer and Microsoft PowerShell MVP",
 "question_count": 7,
 "answer_count": 72,
 "view_count": 70,
 "up_vote_count": 72,
 "badge_counts": {
 "gold": 0,
 "silver": 3,
 "bronze": 9
 }
 }

Now, let’s take a look at the C# that makes this happen. By changing this to PowerShell,
we can immediately reduce the ceremony by stripping out using, namespace, class, and
Main.

using System;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 var url = @"http://api.stackoverflow.com/1.1/users/110865";

 var client = new System.Net.WebClient();

 var response = client.DownloadData(url);

 var decompress = new System.IO.Compression.GZipStream(
 new System.IO.MemoryStream(response),
 System.IO.Compression.CompressionMode.Decompress);

 var reader = new System.IO.StreamReader(decompress);

 Console.WriteLine(reader.ReadToEnd());
 }
 }
}

112 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

Intermediate PowerShell
Another step is to change the var designation to a $, and I’ll also remove the @ and;
(too much typing for my taste). So, a line in C# will go from this:

var url = @"http://api.stackoverflow.com/1.1/users/110865";

To this in PowerShell:

$url = "http://api.stackoverflow.com/1.1/users/110865"

Next, we’ll change the C# new keyword to the PowerShell New-Object syntax. It’s more
straightforward. This C# code:

var client = new System.Net.WebClient();

becomes this in PowerShell:

$client = New-Object Net.WebClient

To summarize, we added a $ to client and changed new to New-Object. We no longer
need the System designation, so we dropped the parentheses and semicolon. That’s how
you create an object in PowerShell.

I want to draw your attention to few things in the following script. The $data variable
contains a byte array. The Net.WebClient is created using New-Object; it’s wrapped in
parentheses and can be immediately used as an object so the DownloadData() method
can be invoked.

function Get-StackOverflowUser ($id) {

 $url = "http://api.stackoverflow.com/1.1/users/$id"
 $data = (New-Object Net.WebClient).DownloadData($url)
 $memoryStream = New-Object System.IO.MemoryStream(,$data)
 $decompress = New-Object `
 System.IO.Compression.GZipStream($memoryStream,"Decompress")
 $reader = New-Object System.IO.StreamReader($decompress)
 $ret = $reader.ReadToEnd()

 ($ret | ConvertFrom-Json).Users
}

Get-StackOverflowUser -id 110865

A final observation: when the GZipStream object is created, the second parameter in the
constructor takes a CompressionMode enum. PowerShell lets you pass in a string and
converts it to the enum for you. Ah—less ceremony, more essence.

Results
So now we have a workable PowerShell function where we can pass in a StackOver
flow user ID, get the data, unzip it, get the JSON, and produce this PowerShell object
with properties.

Transcoding C# to PowerShell | 113

Ninety percent of this example works in PowerShell v2. We can easily transform the
JSON string to a PowerShell object in PowerShell v3 using the ConvertFrom-Json cmdlet,
as you can see in the following line:

($ret | ConvertFrom-Json).Users

Converting JSON to PowerShell
If we wanted to convert the JSON using PowerShell, we could use the same libraries
Jonathan used in his C# solution. We could load up the JSON.NET DLL and call the
same methods. PowerShell v3 adds several cmdlets that make working with the Web
and its data a snap.

user_id : 110865
display_name : Doug Finke
reputation : 1696
website_url : http://dougfinke.com/blog/
location : New York, NY
about_me : Software Developer and Microsoft PowerShell MVP
question_count : 7
answer_count : 72
view_count : 70
up_vote_count : 72
badge_counts : @{gold=0; silver=3; bronze=9}

In closing, I’d like to point out the reach of PowerShell. Using this new function, Get-
StackOverflowUser, we can easily get user information from this website and into
Microsoft Excel for analysis. Here, we retrieve the information about a StackOverflow
user and export it to a CSV file. Using PowerShell’s Invoke-Item, our script reads the
file extension and launches Microsoft Excel.

Get-StackOverflowUser | Export-Csv -NoTypeInformation .\users.csv
Invoke-Item .\users.csv

I can’t stress this point enough. Once information is in PowerShell as an object, you
can do amazing things with it. Here I showed how simple it is to get it up working with
Excel. Exporting the information to another REST endpoint, a web service, or SQL
Server is just as easy.

Microsoft’s Roslyn
In the past, compilers have acted as black boxes—meaning you put source text in, and
an assembly comes out. All of the rich information that the compiler produces is thrown
away and unavailable for anyone to use.

Microsoft’s Roslyn project changes that traditional model by opening up the Visual
Basic and C# compilers as APIs. These APIs allow tools and end users to share in the
compilers’ wealth of information and code analysis. The Roslyn community technology
preview (CTP) gives us a taste of the next generation of language object models for code

114 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

generation, analysis, and refactoring, and the upcoming support for scripting and
interactive use of VB and C#.

Roslyn opens up new opportunities for developers to write powerful refactorings and
language analysis tools, as well as to allow anyone to incorporate parsers, semantic
engines, code generators, and scripting in their applications.

If you want to play along in this section, you need to download the Roslyn CTP from
http://www.microsoft.com/en-us/download/details.aspx?id=27746.

While the amazing opportunities that Roslyn presents are too much to
cover in detail here, I encourage you to check out my blog post, “Analyze
C# Source files using PowerShell and the Get-RoslynInfo Cmdlet,” at
http://bit.ly/v9QlAW.

Microsoft Roslyn and PowerShell
The Roslyn libraries contain gems ready for discovery. To investigate them, we’re going
to use Add-Type again, but this time with two parameters: the -Path parameter, which
lets us point directly to a DLL, and the -PassThru parameter, which returns a
System.Runtime object that represents the types that were added.

$dll = "C:\Program Files\Reference Assemblies\Microsoft\Roslyn
\v1.0\Roslyn.Services.dll"

Add-Type -Path $dll -PassThru |
 Where {$_.IsPublic -And $_.BaseType} | Sort Name

We’ll pipe this to the Where cmdlet so we can filter only the Public libraries that have
a BaseType. Finally, we’ll sort the results. I usually squirrel away snippets like this and
wrap them in a function for easy use later. This one can be used over and over and
parameterized with a Filename so we can inspect any .NET DLL.

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False CostBasedRetainerFactory`1 System.Object
True False DefaultWorkspaceListener System.Object
True False DocumentId System.Object
True False DocumentInfo System.Object
True False ExportLanguageServiceAttribute System.Compon
True False ExportLanguageServiceProviderAttribute System.Compon
True False ExportMSBuildLanguageServiceAttribute Roslyn.Servic
True False ExportWorkspaceServiceFactoryAttribute System.Compon
True False Extensions System.Object
True False HostWorkspace Roslyn.Servic
True False PersistenceService System.Object
True False ProjectId System.Object
True False ProjectionWorkspace Roslyn.Servic
True False Solution System.Object
True False SolutionEdit System.Object
True False SolutionExtensions System.Object

Microsoft’s Roslyn | 115

http://www.microsoft.com/download/en/details.aspx?id=27746
http://www.microsoft.com/en-us/download/details.aspx?id=27746
http://bit.ly/v9QlAW

True False SolutionId System.Object
True True SymbolDescriptionGroups System.Enum
True True SymbolDescriptionOptions System.Enum
True False TrackingWorkspace Roslyn.Servic
True False Workspace System.Object
True False WorkspaceExtensions System.Object
True False WorkspaceKind System.Object
True False WorkspaceTaskSchedulerFactory System.Object

The name that grabbed my attention was Solution. Let’s see if it has any interesting
static members we can work with.

[Roslyn.Services.Solution] | Get-Member -Static

Here is the list of static methods and properties, and a peek at their signatures:

 TypeName: Roslyn.Services.Solution

Name MemberType Definition
---- ---------- ----------
Create Method static Roslyn.Services.ISolution
Equals Method static bool Equals(System.Object
HasProjects Property bool HasProjects {get;}
Id Property Roslyn.Services.SolutionId Id {ge
Load Method static Roslyn.Services.ISolution
LoadStandAloneProject Method static Roslyn.Services.IProject L
MetadataFileProvider Property Roslyn.Compilers.IMetadataFilePro
ProjectIds Property System.Collections.Generic.IEnume
Projects Property System.Collections.Generic.IEnume
ReferenceEquals Method static bool ReferenceEquals(Syste

The Load() method caught my eye here. The listing cut off the full signature; here it is
in full:

Load(string solutionFileName, string configuration, string platform)

This is interesting because it looks like it’ll read and parse a Visual Studio solution file.
Historically, this was annoying to do on your own. Now Microsoft is making it available
and will support it going forward.

Using PowerShell to Display Visual Studio Detail
Let’s put the Load() method to use by pointing it to a Visual Studio solution:

$slnFileName = Resolve-Path "..\..\C#\BeaverMusic\BeaverMusic.sln"

[Roslyn.Services.Solution]::Load($slnFileName)

And we get some good details from this; let’s see what’s in Projects:

Id : Roslyn.Services.SolutionId
MetadataFileProvider :
HasProjects : True
ProjectIds : {(ProjectId, C:\O'Reilly\examples\C#\Beaver
 (ProjectId, C:\O'Reilly\examples\C#\BeaverM
 C:\O'Reilly\examples\C#\BeaverMusic\BeaverM

116 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

 C:\O'Reilly\examples\C#\BeaverMusic\Embedde
Projects : {(ProjectId, C:\O'Reilly\examples\C#\Beaver
 (ProjectId, C:\O'Reilly\examples\C#\BeaverM
 C:\O'Reilly\examples\C#\BeaverMusic\BeaverM
 C:\O'Reilly\examples\C#\BeaverMusic\Embedde

Here we’ll pick off just the first project:

[Roslyn.Services.Solution]::Load($slnFileName).Projects |
 Select -First 1

The Roslyn API lets us get rich information on the projects and files inside a Visual
Studio solution. Looking at the output of the previous command, we’ll use the
Documents property and pull together one more script that extracts the project name
and all of the files in that project.

Solution : Roslyn.Services.Solution
Id : (ProjectId, C:\O'Reilly\examples\C#\
LanguageServices : Roslyn.Services.CSharp.CSharpLanguag
AssemblyName : BeaverMusic
DisplayName : BeaverMusic.UI.Shell
MetadataReferences : {Roslyn.Compilers.AssemblyFileRefere
ProjectReferences : {(ProjectId, C:\O'Reilly\examples\C#
 (ProjectId, C:\O'Reilly\examples\C#\
 C:\O'Reilly\examples\C#\BeaverMusic\
CompilationOptions : Roslyn.Compilers.CSharp.CompilationO
ParseOptions : Roslyn.Compilers.CSharp.ParseOptions
AssemblyResolver : Roslyn.Compilers.AssemblyResolver
IsSubmission : False
PreviousSubmissionProjectId :
HasDocuments : True
DocumentIds : {C:\O'Reilly\examples\C#\BeaverMusic
 C:\O'Reilly\examples\C#\BeaverMusic\
 C:\O'Reilly\examples\C#\BeaverMusic\
 C:\O'Reilly\examples\C#\BeaverMusic\
Documents : {Roslyn.Services.DocumentId, Roslyn.

The BeaverMusic.sln file is part of the examples available with this book. (Chapter 5
shows it in action.) Here, we use the Roslyn libraries to load the solution and loop
through the Projects and then the DocumentIds, extracting the project name,
$Project.DisplayName, and filename of each file in that project, Split-Path $Docu
ment.FileName –Leaf.

$slnFileName = "..\..\C#\BeaverMusic\BeaverMusic\BeaverMusic.sln"

$result = ForEach ($Project in
([Roslyn.Services.Solution]::Load($slnFileName)).Projects) {
 ForEach($Document in $Project.DocumentIds) {
 New-Object PSObject -Property @{
 ProjectName = $Project.DisplayName
 Filename = Split-Path $Document.FileName -Leaf
 }
 }
}

Using PowerShell to Display Visual Studio Detail | 117

$result | Format-Table -AutoSize

The results of running this script are as follows:

ProjectName Filename
----------- --------
BeaverMusic.UI.Shell AlbumEditDialogView.xaml.cs
BeaverMusic.UI.Shell AlbumEditDialogViewModel.cs
BeaverMusic.UI.Shell AlbumEditView.xaml.cs
BeaverMusic.UI.Shell AlbumEditViewModel.cs
BeaverMusic.UI.Shell AlbumListView.xaml.cs
BeaverMusic.UI.Shell AlbumListViewModel.cs
BeaverMusic.UI.Shell MainViewModel.cs
BeaverMusic.UI.Shell App.xaml.cs
BeaverMusic.UI.Shell MainWindow.xaml.cs
BeaverMusic.UI.Shell PowerShellConsoleLauncher.cs
BeaverMusic.UI.Shell AssemblyInfo.cs
BeaverMusic.UI BindableBase.cs
BeaverMusic.UI WatermarkTextBox.cs
BeaverMusic.UI DelegateCommand.cs
BeaverMusic.UI IViewFactory.cs
BeaverMusic.UI AssemblyInfo.cs
BeaverMusic.UI ViewElement.cs
BeaverMusic.UI ViewFactory.cs
BeaverMusic Album.cs

Rather than hardcode the $slnFilename, we could make it a parameter. It is as simple
as this: param ($slnFilename). By doing this, we could use Get-ChildItem (aka dir or
ls), find all the .sln files (passing each one to this script), and get a PowerShell array of
objects with all of these details. Again, this is just a stepping-stone to composing a series
of simple, targeted PowerShell functions to do a range of operations—from building
targeted searches to generating reports or more code, just to name a few.

The properties on the Roslyn objects have insightful information. Also of interest are
the methods we find on these objects.

Roslyn’s Document Methods
The following script is slightly modified from the previous one. Here we want to take
a look at what methods exist on the Documents property, which is found on the
Project object. I’ve refactored this script to grab the first document in the first project
using the –First parameter found on the Select cmdlet. I store that document in the
variable $FirstDocument and pipe it to Get-Member, filter it for only methods (-MemberType
Method), and sort the final result.

.\Add-RoslynLibraries

$slnFileName = Resolve-Path "..\..\C#\BeaverMusic\BeaverMusic.sln"

$FirstProject = ([Roslyn.Services.Solution]::Load($slnFileName)).Projects |
 Select -First 1

118 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

$FirstDocument = $FirstProject.Documents | Select -First 1

$FirstDocument | Get-Member -MemberType Method | Sort Name

There are a few more methods than these, but here are the interesting ones:

 TypeName: Roslyn.Services.Document

Name MemberType Definition
---- ---------- ----------
GetSemanticModel Method Roslyn.Compilers.Common.ISemanticModel
GetSyntaxTree Method Roslyn.Compilers.Common.CommonSyntaxTree
GetText Method Roslyn.Compilers.IText GetText

As you pipe results down through the ForEach mechanism, you can also pipe what you
have to Get-Member so you can inspect the attributes of the object that is being passed
via the PowerShell pipeline. Here is a neat trick: after piping the object through to Get-
Member, you can opt to see it in a GUI that can filter the details (rather than seeing it
print to the console) by piping it to Out-GridView. This technique is super-useful when
the target object has lots of attributes or when there is lots of text scrolling by in the
console (see Figure 8-1 and the code that follows). This is a nonblocking operation.

$FirstDocument | Get-Member -MemberType Method | Out-GridView

Next, we want to call the GetSyntaxTree() method and then the Root property on it.
Why? Because it looks interesting, and we’ll be able to pull key aspects from our C#
code later, like the using statements.

$cancelToken = New-Object System.Threading.CancellationToken
$FirstDocument.GetSyntaxTree($cancelToken).Root

Figure 8-1. Piping Get-Member to Out-GridView

Roslyn’s Document Methods | 119

Wait, where did the $cancelToken come from, and why? How did I know to pass a
CancellationToken to the GetSyntaxTree() method? If you invoke a method and drop
the parentheses, PowerShell will display the overload definitions for it.

$FirstDocument.GetSyntaxTree

OverloadDefinitions

Roslyn.Compilers.Common.CommonSyntaxTree
GetSyntaxTree(System.Threading.CancellationToken cancellationToken)

Here are the details from the Root property on the $FirstDocument variable:

Externs : {}
Usings : {System, System.Collections.Generic, System.Linq, System.Text...}
Attributes : {}
Members : {BeaverMusic.UI.Shell
 }
EndOfFileToken :
Parent :
Kind : CompilationUnit
FullSpan : [0..605)
Width : 605
FullWidth : 605

We can grab the Root of the syntax tree and pull out all the using statements from the
C# code.

$cancelToken = New-Object System.Threading.CancellationToken
$Root = $FirstDocument.GetSyntaxTree($cancelToken).Root

$Root.Usings | Select name

Here are the results:

Name

System
System.Collections.Generic
System.Linq
System.Text
System.Windows
System.Windows.Controls
System.Windows.Data
System.Windows.Documents
System.Windows.Input

There are many other properties you can use to extract meaningful data from code.
This is a big step up from using string pattern matching or regular expressions. This
gets down to the syntactical, semantic level of the source code.

Plus, you can do it in a few lines of PowerShell, and Microsoft will be supporting the
Roslyn libraries going forward. So, as the language evolves, you aren’t maintaining
parsers and the code that comes with them.

120 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

PowerShell Roslyn Class Viewer
All this spelunking is nice—finding our way around .NET libraries (Roslyn, to be spe-
cific)—but now let’s do something a bit more practical. I want to recursively search a
directory of C# files (*.cs), look inside each, extract all the class names, and display
them in a list box in a GUI. When I click on the class name in the list box, I want only
the code defining that class to show up in a text box next to it on the righthand side
(as shown in Figure 8-2).

You see repeated items for some classes because they are C# partial classes, and Roslyn
returns them as such.

In Chapter 7, we walked through the ShowUI PowerShell module, which is designed
to make creating WPF GUI applications easy in PowerShell.

You can download ShowUI at http://showui.codeplex.com/.

If you run ShowClasses.ps1 to import ShowUI, you’ll get the class view of the sample
C# application that accompanies this book. Clicking the class name on the left brings
up the code on the right. This is very useful when you want to get a bird’s-eye view of
the general makeup of the files for a .NET application.

Figure 8-2. PowerShell Roslyn class viewer

PowerShell Roslyn Class Viewer | 121

http://showui.codeplex.com/

Plus, you don’t need Visual Studio loaded up to get useful information about the C#
code you’re looking at.

How It Works at a High Level
ShowClasses.ps1 is where this kicks off; it calls GetCSharpClass.ps1, which calls upon
FindCSharpClass.ps1, which in turn calls InvokeRoslynCodeGen.ps1. Here’s a more
detailed explanation of each script:

ShowClasses.ps1
This script imports the ShowUI module, defines the layout of the GUI, and calls
the GetCSharpClass, which retrieves all the information that is used to display the
class names.

GetCSharpClass.ps1
This script sets up the New-Module that is used to extract the class names and other
details of the C# files. It “overrides” the VisitClassDeclaration method that
Roslyn calls when it finds a class name.

FindCSharpClass.ps1
This script is responsible for recursively searching directories for C# files (*.cs),
passing them to the Roslyn ParseCompilationUnit (this returns the syntax tree),
passing the PowerShell module created in GetCSharpClass to it, and returning the
collected results.

InvokeRoslynCodeGen.ps1
This cool script is modeled after the script in Chapter 4 that works with the abstract
syntax tree for PowerShell code. Using PowerShell, it cracks open the Roslyn.Com
pilers.CSharp.SyntaxVisitor, reflects over all the method signatures (including
parameters), code-generates C# and then code-generates C# for each method,
including a body of code to handle the invocation. At the end, it compiles the C#
on the fly for use in the other PowerShell scripts.

Next, you’ll find the GetCSharpClass.ps1 script. Change the name of VisitClassDecla
ration to match the name of one of the overridden Visit* methods in Roslyn.Compil
ers.CSharp.SyntaxVisitor. You can find that in the Roslyn docs, or explore the DLL
directly this way in PowerShell:

[Rosyln.Compilers.CSharp.SyntaxVisitor] |
 Get-Member Visit* -MemberType Method

For example, in VisitFieldDeclaration, the $node parameter will contain all the details
about each of the field declarations found. Pull out the ones you are interested in and
add them to the $script:results as PSObjects with properties.

Here is the GetCSharpClass.ps1 script:

param (
 $targetDirectory
)

122 | Chapter 8: DLLs, Types, Properties, Methods, and Microsoft Roslyn

.\FindCSharpClass $targetDirectory (New-Module -AsCustomObject {

 $script:results = @()

 function VisitClassDeclaration ($node) {
 $script:results += New-Object PSObject -Property @{
 Name = $node.Identifier.Value
 Class = $node.Identifier
 }
 }

 # Implicit interface
 function GetResults {
 $script:results
 }
})

Summary
Using PowerShell to glue together powerful components is a made-to-order scenario
for scripting and .NET DLLs. The discovery process demonstrated in this chapter is
one you can use over and over on .NET libraries you come across. The steps are:

1. Load the DLL in to the current PowerShell session.

2. Pipe .NET types or instances to Get-Member to discover the methods and properties
you can access.

3. Rinse and repeat.

Summary | 123

CHAPTER 9

Writing Little Languages in PowerShell

The term little language was coined by Jon Bentley in a 1986 article he wrote for
Communications of the ACM (http://bit.ly/akBpXr).1 Little languages are also referred
to as domain-specific languages, or DSLs.

Some little languages are intended to save development time and effort by allowing a
developer to express his or her intentions at a much higher level of abstraction. This
allows the developer’s programs to be much shorter than equivalent programs in other
languages. The “little” part primarily refers to the scope of what the language tackles.

In this chapter, we will focus on using PowerShell as a better XML, building our own
little language that can do more than just plain XML. Then, we’ll build another DSL
to blend Graphviz, an open source graph visualization toolset, into the PowerShell
ecosystem. This offers us a better way to manipulate abstractions when working with
structural information like diagrams of abstract graphs and networks.

There are many examples of DSLs in the software industry—for example, MSBuild is
a little language, to my way of thinking. While others may view MSBuild as a build
system that reads a specific schema of XML as input, I see it as a domain-specific lan-
guage in an XML format, specific to dealing with Visual Studio builds.

One of the challenges of using MSBuild with XML happens when we want to extend
it. Adding a custom task to MSBuild requires dropping into C#, inheriting from some
base classes, overriding methods, and extracting parameters from XML for the task
you’re implementing. V4 of MSBuild supports inline tasks based in XML. It’s an in-
teresting cognitive switch to use XML with CDATA sections and then add C# code.

1. Jon Bentley, “Little languages,” Communications of the ACM 29, no. 8 (1986): 711–21.

125

http://bit.ly/akBpXr

psake (pronounced “sah-kay”) is a build automation tool written in
PowerShell by James Kovacs (http://bit.ly/ACMUpZ). It avoids the
angle-bracket tax associated with executable XML by leveraging the
PowerShell syntax in your build scripts. psake has a syntax inspired by
rake (a.k.a. make in Ruby) and bake (a.k.a. make in Boo), but is easier
to script because it leverages your existing command-line knowledge.
You can download psake here: http://bit.ly/tL8Hdz.

Unlike MSBuild, extending psake is straightforward—you write more
PowerShell.

Adding a New Construct to PowerShell
In PowerShell, it is simple to create a new construct. For example, here is a new looping
construct:

function repeat {
 param (
 [int]$HowManyTimes,
 [scriptblock]$block
)

 1..$HowManyTimes | Foreach { & $block }
}

Here we use that code to print “Hello World” three times:

PS C:\> repeat 3 {"Hello World"}

Hello World
Hello World
Hello World

Hat tip to Daniel Moore, who suggested a Ruby-style 3 | times {"Hello
World"}.

This can be expressed as a filter—a function that just has a process script
block. Plus, this one takes a script block as a parameter:

filter times ([Scriptblock]$Block) {
 1..$_ | ForEach { & $Block }
}

PS C:\> 3 | times {"Hello World"}
Hello World
Hello World
Hello World

Seeing PowerShell functions and script blocks used in this way opens the door to little
languages. It is quick and inexpensive to put together a targeted little language from
scratch. Other benefits to building a little language in PowerShell are PowerShell’s
approachability and the properties of an internal DSL. Because you’re building an in-

126 | Chapter 9: Writing Little Languages in PowerShell

http://bit.ly/ACMUpZ
http://bit.ly/tL8Hdz

ternal DSL in PowerShell using PowerShell (we’re getting meta here), any expression
you use must be a legal expression in PowerShell. This means that the little language
you construct automatically benefits from all that is available in the PowerShell session
in which it is running.

Let’s start by comparing the XML approach, an external DSL, to a PowerShell
approach, an internal DSL. An internal DSL is a language created inside another lan-
guage. Put another way (borrowing Martin Fowler’s definition), “internal DSLs are
particular ways of using a host language to give the host language the feel of a particular
language.” External DSLs, on the other hand, “have their own custom syntax and you
write a full parser to process them.”2 Many XML configurations have ended up as
external DSLs.

PowerShell: A Better XML
XML is used in many places, such as HTML, configuration files, Visual Studio project
definitions, WSDL, data interchange formats, and more. Working with XML in
PowerShell is one of its sweet spots. To-do lists, web pages, insurance claims, and
configuration files are just some examples of ways to use XML to represent information.

Here is a simple to-do list in XML:

$houseworkXml = @"
<todo name="housework">
 <todoItem priority="high">Clean the house.</todoItem>
 <todoItem priority="medium">Wash the dishes.</todoItem>
 <todoItem priority="medium">Buy more soap.</todoItem>
</todo>
"@

We’ll convert it to an XMLDocument in PowerShell like so:

$housework = [xml]$houseworkXml

Finally, we use dot notation on the XML nodes, which prints out the results:

PS C:\> $housework.todo.todoItem

priority #text
-------- -----
high Clean the house.
medium Wash the dishes.
medium Buy more soap.

Now that was simple! We could then pipe that line to the Where cmdlet and filter on,
for example, only medium-priority items.

2. http://martinfowler.com/bliki/DomainSpecificLanguage.html

PowerShell: A Better XML | 127

http://martinfowler.com/bliki/DomainSpecificLanguage.html

But Wait—There’s More
Let’s rework the XML into a PowerShell little language representation. Here is what
we want it to look like:

New-ToDoList housework {
 New-ToDoItem high "Clean the house." # <1>
 New-ToDoItem medium "Wash the dishes."
 New-ToDoItem medium "Buy more soap."
}

This looks similar to the repeat construct we started with initially. There is a function
name, New-ToDoList, and a parameter, housework, followed by a PowerShell script block.

Building the New-ToDoList function

We create a New-ToDoList function that takes two parameters. The first parameter is
the name of the to-do list and the second is the script block.

function New-ToDoList {
 param(
 [string]$ToDoListName,
 [scriptblock]$ScriptBlock
)
}

You can see at <1> another function called New-ToDoItem. Let’s build that function now.

Building the New-ToDoItem function

Again, this is very easy, very straightforward. We create a function, New-ToDoItem, with
two parameters, both of which are strings—the first takes a Priority, and the second
is the Task.

function New-ToDoItem {
 param (
 [string]$Priority,
 [string]$Task
)
}

Where to put this function?

PowerShell lets you define functions inside of other functions. We’ll do this by putting
the New-ToDoItem function inside the New-ToDoList function. For this example, it makes
passing the script around easier, and we’ll use this nested scope to our advantage.

128 | Chapter 9: Writing Little Languages in PowerShell

PowerShell is very flexible when it comes to ad hoc development. The
“whipupitude” factor is impressive (this term comes from Perl). We can
whip up this little language, try it, tweak it, and then if we decide we
want to formalize it, no problem. We can spin these functions off to
separate files, or host them in a PowerShell module and take advantage
of that organizational approach.

Here is one PowerShell function nested inside another. At this point, these functions
do pretty much nothing more than define the scaffolding of our little language. Next,
we’ll invoke/execute the script block and then flesh out the body of the New-ToDoItem,
which is responsible for emitting the results as an object with properties.

function New-ToDoList {
 param(
 [string]$ToDoListName,
 [scriptblock]$ScriptBlock
)

 function New-ToDoItem {
 param (
 [string]$Priority,
 [string]$Task
)
 }
}

Invoking the script block

Notice <Annotation 1> in the following example. The & is the PowerShell call operator.
It executes what is in the script block, meaning it will execute each of the New-
ToDoItem lines we started within the envisioned little language.

function New-ToDoList {
 param(
 [string]$ToDoListName,
 [scriptblock]$ScriptBlock
)

 function New-ToDoItem {
 param (
 [string]$Priority,
 [string]$Task
)
 }

 & $ScriptBlock # <Annotation 1>
}

All but one piece of the mechanics are in place for the little language to work. New lists
can be named and to-do item tasks can be created, prioritized, and associated with it.

PowerShell: A Better XML | 129

Next we’ll add the final piece that will capture and emit these details to the PowerShell
pipeline.

The New-ToDoItem Body

We’ll create a new PSObject on the fly and add three properties—the name of the to-
do list, the priority, and the task:

New-Object PSObject -Property @{
 ToDoListName = $TodoListName
 Priority = $priority
 Task = $task
}

Now we’ll string all of these snippets of script together to form the little language for
creating to-do lists.

Putting It All Together
Here is the final little language—not even a page of code. Plus, notice how from within
the embedded function, New-ToDoItem, we can access the $ToDoListName parameter on
the New-ToDoList function. This is super-useful and really adds to the whipupitude
factor.

function New-ToDoList {
 param(
 [string]$ToDoListName,
 [scriptblock]$ScriptBlock
)

 function New-ToDoItem {
 param (
 [string]$Priority,
 [string]$Task
)

 New-Object PSObject -Property @{
 ToDoListName = $ToDoListName
 Priority = $Priority
 Task = $Task
 }
 }

 & $ScriptBlock
}

The Little Language in Action
Here we go, running our little language:

New-ToDoList housework {
 New-ToDoItem high "Clean the house."

130 | Chapter 9: Writing Little Languages in PowerShell

 New-ToDoItem medium "Wash the dishes."
 New-ToDoItem medium "Buy more soap."
}

This code produces the following output and looks like the results we got from our
XML approach. These are PowerShell objects with properties, so we can pipe them to
any other PowerShell cmdlets. We can filter, sort, export, and more.

Priority ToDoListName Task
-------- ------------ ----
high housework Clean the house.
medium housework Wash the dishes.
medium housework Buy more soap.

Is It Worth Creating Your Own Little Language?
Without a doubt, building little languages in PowerShell is something you want in your
toolbox. They are easy to build, try, and maintain. Here is the key reason—you can’t
do this with XML:

New-ToDoList housework {
 New-ToDoItem high "Clean the house."
 New-ToDoItem medium "Wash the dishes."
 New-ToDoItem medium "Buy more soap."

 "Buy Beer", "Get Pizza", "Purchase Microsoft Stock" |
 ForEach {
 New-ToDoItem high $_
 }
}

Remember, this is an internal DSL, and any expression you use must be a legal
expression in PowerShell. That is not a constraint. You get to use the entire reach of
PowerShell in the little language you just built.

Priority ToDoListName Task
-------- ------------ ----
high housework Clean the house.
medium housework Wash the dishes.
medium housework Buy more soap.
high housework Buy Beer
high housework Get Pizza
high housework Purchase Microsoft Stock

We created two functions that take a combined four parameters for our to-do little
language. The key enabler is the script block, which can contain any valid PowerShell
expression. The call operator & then “runs” the script block, executing all the Power-
Shell within it.

I’ve used this to great effect on many projects, creating configuration languages, code
transformers, and more. I often look to the Ruby and Python communities (and others)
for how they approach these challenges. They have been doing it very effectively for
many years.

The Little Language in Action | 131

Now we’ll turn our attention to writing DSL around an existing DSL, Graphviz. By
doing this, we’ll be able to better interact with this visualization directly from
PowerShell in a very natural and expressive way.

Graphviz
In this last example of building DSLs in PowerShell, we’ll build out the PowerShell
functions needed to create nodes and edges for a graph. Then I’ll demonstrate how to
use this functionality to create a simple Hello World example, a structural relationship
by squaring numbers, and finally a more practical example of getting the running pro-
cesses on my box and graphing the companies that own them.

Graphviz’s dot language is an example of a DSL. Graph visualization is a way of rep-
resenting structural information as diagrams of abstract graphs and networks. It has
important applications in networking, bioinformatics, software engineering, database
and web design, machine learning, and in visual interfaces for other technical domains.

If you want to play along in this section, download Graphviz here: http://www.graphviz
.org/Download.php.

Graphviz “Hello World”
Here goes the obligatory “Hello World” GraphViz example. Remember, it is a DSL, so
let’s dissect what we have in the string. First up is the command digraph. G is the name
of the graph, and digraph takes commands inside curly braces: {Hello->World}. Both
Hello and World are nodes connected by an edge.

PS C:\> "digraph G {Hello->World}" | dot -Tpng -o .\hello.png
PS C:\> .\hello.png

The string "digraph G {Hello->World}" is piped to the dot application. dot is “hier-
archical,” or layered, drawings of directed graphs. This is the default tool to use if edges
have directionality. dot aims edges in the same direction (top to bottom, or left to right)
and then attempts to avoid edge crossings and reduce edge length.

Hello World Visual
dot has many parameters—the ones we’re using are –T and –o. The –T parameter tells
dot what type of output to generate, so in this case –Tpng indicates a PNG format. The –
o tells dot to generate a file and takes a filename.

The {Hello->World} representation says Hello and World are nodes, and -> indicates
that there’s an edge between them with Hello as the source. You can see in Fig-
ure 9-1 that the arrow is drawn from Hello to World.

132 | Chapter 9: Writing Little Languages in PowerShell

http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://www.libpng.org/pub/png/

A PowerShell DSL as a façade to GraphViz
GraphViz is already a terse and approachable little language, but we want to better
enable it in the PowerShell environment. Here is how I’m envisioning we want to work
with it, and then we’ll build it:

New-Graph G {Add-Edge Hello World}

We want two functions, New-Graph and Add-Edge, in the verb-noun format so they’re
consistent with the rest of PowerShell. Add-Edge takes two parameters, source and
target, for the nodes used in GraphViz. New-Graph takes two parameters, the name of
the graph and a script block. The pattern is the same as the PowerShell to-do list DSL
earlier in the chapter.

The PowerShell version is more verbose than GraphViz, but I’m okay with that because
of what we’ll be able to leverage later.

Building Add-Edge

Add-Edge is simple; it takes two parameters and creates a string from them with a ->
between. We append that string to the variable $Script:edges. $Script: tells
PowerShell to create the variable edges in the script scope. This is different than the
$Global: scope. We’ll create the variable edges next when we create the New-Graph
function.

function Add-Edge {
 param(
 [string]$Source,
 [string]$Target
)

 $Script:edges += "$Source->$Target"
}

Building New-Graph

New-Graph follows the same pattern as the New-ToDoList function in the first example of
this chapter. The keys are the $ScriptBlock parameter and embedding the Add-Edge
function in it.

We create the $Script:edges variable, set it to an empty array, @(), and then append
to it each time an Add-Edge is called in the script block passed to the New-Graph.

Figure 9-1. Hello World—Graphviz

Graphviz | 133

function New-Graph {
 param(
 [string]$Name,
 [scriptblock]$ScriptBlock
)

 $Script:edges = @()

 function Add-Edge {
 param(
 [string]$Source,
 [string]$Target
)

 $Script:edges += "$Source->$Target"
 }

 & $ScriptBlock

@"
digraph $name {
 $Script:edges
}
"@

}

Emitting output from New-Graph

New-Graph needs to generate the string "digraph G {Hello->World}". Adding the here-
string, indicated by the @”...”@, after & $ScriptBlock will generate the syntax needed
for GraphViz to process.

PS C:\> New-Graph G {Add-Edge Hello World}

digraph G {
 Hello->World
}

Mix and Match PowerShell and GraphViz
Our newly minted PowerShell functions generate what we did by hand at the start of
this chapter. Now, we can specify the PowerShell DSL on the lefthand side of the pipe
and continue to use dot on the righthand side. This creates the same visual as before:

PS C:\> New-Graph G {Add-Edge Hello World} | dot -Tpng -o .\hello.png
PS C:\> .\hello.png

134 | Chapter 9: Writing Little Languages in PowerShell

Kick It Up a Notch: New-Graph Is an Internal DSL
Remember, one of the great properties of an internal DSL is that any expression you
use must be a legal expression in the host language. Since PowerShell is the host lan-
guage, we get to use all of PowerShell when defining our graph.

Here, we’re creating a range from 1 to 15, piping it to foreach, and creating an edge for
that number to the square of that number.

You can’t do this with the GraphViz DSL. While it takes some effort and cost to build
the PowerShell wrapper, the benefits significantly outweigh the costs. Plus, the
PowerShell implementation is 25 lines of code, much of which is plumbing (meaning
defining the function and parameters calling the script block). It’s less than a page of
code.

New-Graph G {
 ForEach($x in 1..15) {
 Add-Edge $x ($x*$x)
 }
} | dot -Tpng -o .\test.png

What’s interesting about tools like GraphViz that visualize graphs is that they’ll do
work for you. When we generate the edges from this simple algorithm, these two lines
are produced (out of many more):

2->4
4->16

GraphViz recognizes this and “chains” the 2->4->16 in the resulting visual, as shown
in Figure 9-2.

Graphing the Companies from Get-Process
In this final example, we tie together a real output using more of the PowerShell eco-
system in the New-Graph internal DSL.

Now I’m going to grab all the processes on my box, keeping only the ones where the
Company property matches either Inc. or Corp. For each one found, we will create an

Figure 9-2. Graph squares of numbers

Mix and Match PowerShell and GraphViz | 135

edge between the Company and the Name of the process (see the resulting visual in Fig-
ure 9-3).

New-Graph G {

 Get-Process |
 Where {$_.Company -match 'Inc\.|Corp\.'} |
 ForEach {
 Add-Edge "$($_.Company)" "$($_.Name)"
 }

} | dot -Tpng -o .\test.png

You can’t do this with GraphViz! By creating a simple DSL in PowerShell that
transcodes these basics into the GraphViz DSL, we’re unlocking some really cool pos-
sibilities.

Summary
Throughout this chapter, I’ve used the acronym DSL to describe our example, though
some would call it a DSV (domain-specific vocabulary). Others suggest replacing these
terms altogether with the definition of library. And it’s true: building these types of
solutions is similar to building libraries or frameworks. As Martin Fowler says in his
book Domain-Specific Languages (Addison-Wesley Professional), “Indeed, most DSLs
are merely a thinly veiled library or framework.” Later, he describes the Ruby
community’s approach to library and framework design as a more fluent approach—
that is, trying to make interacting with a library feel like programming in a specialized
language.

Little languages, or DSLs, are good at taking slices of programming and making them
easier to understand, easier to write, and quicker to modify, which can lead to fewer
bugs.

Another benefit is that people with whom you collaborate and who need to read what
you’ve written have a smaller surface to understand. The amount of ramp-up time
required for learning a codebase can be a serious bottleneck. Learning the simple tech-
niques shown in this chapter can help address that issue.

Figure 9-3. Graph of each process running and the company that owns it

136 | Chapter 9: Writing Little Languages in PowerShell

Look to the PowerShell community for many more examples of little languages.
Simplifying complexity is one of PowerShell’s key strengths, after all.

Summary | 137

CHAPTER 10

PowerShell, COM, and More

I bet almost every application you work with sports the option “Export to Excel.” Good
news: PowerShell too provides an easy path to interacting with Microsoft Office, via
COM (Component Object Model). In this chapter, I’ll show you how to “control” both
Excel and Internet Explorer through a COM interface. Master this technique, and you’ll
find yourself leveraging it over and over. It provides quick solutions for your users, and
soon you’ll be using it in your day-to-day routines in ways you never expected.

Before I go down the COM route, I want to show you how you can use Invoke-Item to
great effect.

Opening a File in Excel Using Invoke-Item
I have a file named authors.csv, the contents of which are shown in Figure 10-1. If I
pass that filename to Invoke-Item, it will perform the default action for the file’s ex-
tension on the specified item. Typing the following will launch Microsoft Excel and
open authors.csv; see Figure 10-2.

PS C:\> Invoke-Item .\authors.csv

Figure 10-1. Authors.csv file content

The Invoke-Item cmdlet is aliased to ii. Try the following:

PS C:\> ii .

This will launch the Windows file explorer in the current directory.

The return on investment (ROI) on these three characters is amazing.

139

On its own, using Invoke-Item at the command line is a gem. Next, we’ll use it in a
PowerShell script for an end-to-end solution.

Working Invoke-Item into a PowerShell Script
I’ll work up some author data to illustrate this example. The important part is that the
technique can be applied to any list created in PowerShell. This means you can query
endpoints like SQL databases and web services, create arrays of PowerShell objects
(lists), pipe them to an export cmdlet (like Export-Csv), and do an Invoke-Item on the
resulting output file to display it in Excel—very cool and compelling.

Let’s see an example to make things clearer. We’ll create a New-Author function that
transforms the four columns in our Excel sheet (Figure 10-2) into a PowerShell object
with the column names as property names, and then set the values to those properties.

function New-Author {
 param (
 [string]$Author,
 [string]$Title,
 [string]$Publisher,
 [int]$Year
)

 New-Object PSObject -Property @{
 Author = $Author
 Title = $Title
 Publisher = $Publisher
 Year = $Year
 }
}

Now we’ll use New-Author to create some author records:

New-Author "Donald E. Knuth" "Literate Programming" "CSLI" 1992
New-Author "Jon Bentley" "More Programming Pearls" "Addison-Wesley" 1990

We can capture the results to a variable using a PowerShell subexpression $().

$authors = $(
 New-Author "Donald E. Knuth" "Literate Programming" "CSLI" 1992
 New-Author "Jon Bentley" "More Programming Pearls" "Addison-Wesley" 1990
)

Figure 10-2. Launching Excel with Invoke-Item

140 | Chapter 10: PowerShell, COM, and More

The $authors variable contains a PowerShell list—an array of objects—with the
appropriate author information. Piping this list to Export-Csv will convert the objects
to comma-separated values and save it to a specified file. We’re also specifying the
–NoTypeInfomation switch because, by default, the first line of the CSV file contains
#TYPE followed by the fully qualified name of the type of the object. The second line
launches that file in Excel, as shown in Figure 10-2.

$authors | Export-Csv -NoTypeInformation .\authors.csv
Invoke-Item .\authors.csv

I use this approach a lot. Whatever data I have, I shape it, export it, and invoke it. Then,
returning to the PowerShell script, I pull data from elsewhere, massage it, scrub it, filter
it, add to or remove from it, and finally pipe and show it in Excel.

Many of these scripts are self-contained, so I can pass them around to colleagues or
present them to my users, ready to run.

Let’s continue working with Excel from PowerShell and see how we can tap into com-
ponents you may not know about. Then, we’ll look at how to control Excel through
its COM interface.

Calling an Excel Function
Microsoft Excel is a powerful environment that makes it possible to analyze, manage,
visualize, and share information. Microsoft has invested billions of research and
development dollars over the years to make Excel what it is. It’d be unfortunate if we
couldn’t leverage this.

In the upcoming example, we’re going to call four Excel functions, Median, StDev, Var,
and Transpose. The first three are statistical functions that take an array and return a
result. The last function, Transpose, returns a vertical range of cells as a horizontal range,
or vice versa.

When you’re working with Excel through the COM interface (or any application using
COM), it is important to manage two things; the first is creating an Excel COM
instance, and the second is releasing it. If you don’t release the instance correctly, it
will continue to run on your system.

Creating an Excel COM Instance
The New-Object cmdlet has a switch parameter, –ComObject. The ComObject parameter
lets you specify the ProgID of a component you want to instantiate. In the case of Excel,
its ProgID is Excel.Application.

Since we are interacting with Excel via COM, we need to play by COM rules, which
means we need to do some housekeeping. We need to decrement reference count on
the Excel object so that it can be freed. We do this by calling the ReleaseComObject()

Calling an Excel Function | 141

method. We’ll call this on both the WorksheetFunction object, $wf, and the Excel object,
$xl, in that order.

$xl = New-Object -ComObject Excel.Application
$wf = $xl.WorksheetFunction

$data = 1,2,3,4
$array = ((1,2,3),(4,5,6),(7,8,9))

"Median : {0}" -f $wf.Median($data)
"StDev : {0}" -f $wf.StDev($data)
"Var : {0}" -f $wf.Var($data)
"Transpose: {0}" -f ($wf.Transpose($array) | Out-String)

$xl.quit()

Release the COM objects
$wf, $xl | ForEach {
 [void][Runtime.Interopservices.Marshal]::ReleaseComObject($_)
}

In PowerShell, whether you’re working with a PowerShell object, .NET
object, or COM object, they are all treated the same. PowerShell is a
great equalizer in this way.

Rerunning this script will instantiate and tear down an instance of Excel each time.
Even though the data is mocked up for input, it could have easily come from files,
databases, web services, and more.

Here we’ve simply output the results to the console. You can imagine scenarios where
this data is collected, transformed, and sent to any number of destinations like other
Excel sheets, other processes via REST, web services, or message queues.

Median : 2.5
StDev : 1.29099444873581
Var : 1.66666666666667
Transpose: 1
4
7
2
5
8
3
6
9

Staying in alignment with one of PowerShell’s core tenants, discoverability, let’s see
how we can discover what other Excel functions are available to use.

142 | Chapter 10: PowerShell, COM, and More

Discovering Available Excel Functions
How many Excel functions are there to choose from? The answer is 348!

Here is the GetExcelWorkfunction script. It has the familiar instantiation and teardown
code for Excel. In the middle, we pipe the WorksheetFunction variable, $wf, to Get-
Member. We want to see only the methods, so we use the -MemberType parameter and
pass Method.

param($Name)

$xl = New-Object -ComObject Excel.Application
$wf = $xl.WorksheetFunction
$wf |
 Get-Member -MemberType Method |
 Sort Name |
 Where {$_.Name -match $Name}

$xl.quit()

Release the COM objects
$wf, $xl | ForEach {
 [void][Runtime.Interopservices.Marshal]::ReleaseComObject($_)
}

Here is how you use it:

PS C:\> .\GetExcelWorkfunction.ps1 | Measure-Object

Count : 348
Average :
Sum :
Maximum :
Minimum :
Property :

GetExcelWorkfunction takes a parameter, $Name, so we can filter the method names more
easily. For example, here are all the Excel worksheet functions that have the number
2 in them:

PS C:\> .\GetExcelWorkfunction.ps1 2

Name MemberType Definition
---- ---------- ----------
Atan2 Method double Atan2 (double, double)
Bin2Dec Method string Bin2Dec (Variant)
Bin2Hex Method string Bin2Hex (Variant, Variant)
Bin2Oct Method string Bin2Oct (Variant, Variant)
Dec2Bin Method string Dec2Bin (Variant, Variant)
Dec2Hex Method string Dec2Hex (Variant, Variant)
Dec2Oct Method string Dec2Oct (Variant, Variant)
Dummy21 Method double Dummy21 (double, double)
Hex2Bin Method string Hex2Bin (Variant, Variant)
Hex2Dec Method string Hex2Dec (Variant)
Hex2Oct Method string Hex2Oct (Variant, Variant)

Discovering Available Excel Functions | 143

ImLog2 Method string ImLog2 (Variant)
Oct2Bin Method string Oct2Bin (Variant, Variant)
Oct2Dec Method string Oct2Dec (Variant)
Oct2Hex Method string Oct2Hex (Variant, Variant)
SumX2MY2 Method double SumX2MY2 (Variant, Variant)
SumX2PY2 Method double SumX2PY2 (Variant, Variant)
SumXMY2 Method double SumXMY2 (Variant, Variant)
T_Dist_2T Method double T_Dist_2T (double, double)
T_Inv_2T Method double T_Inv_2T (double, double)

Calling More Excel Functions
Here I picked off a few decimal conversion methods from the previous list, and I also
know there is a Factorial() method. Now let’s call these.

$xl = New-Object -ComObject Excel.Application
$wf = $xl.WorksheetFunction

"Dec2Bin : {0}" -f $wf.Dec2Bin(2)
"Dec2Hex : {0}" -f $wf.Dec2Hex(16)
"Dec2Oct : {0}" -f $wf.Dec2Oct(8)
"Factorial : {0}" -f $wf.Fact(9)

$xl.quit()

Release the COM objects
$wf, $xl | ForEach {
 [void][Runtime.Interopservices.Marshal]::ReleaseComObject($_)
}

Here are the results!

Dec2Bin : 10
Dec2Hex : 10
Dec2Oct : 10
Factorial : 362880

This technique of instantiating a COM object and using Get-Member to display the
methods available is not limited to Excel. On my Windows 7 Ultimate system, I have
over 2,400 ProgIDs. This means I can instantiate and tap into over 2,400 different COM
application objects in the same way I did Excel.

Keep reading to learn how to “control” Excel in PowerShell through its COM interface.
I’ll also show you how you can discover all the COM objects currently on your system.

Automating Excel from PowerShell
Learning to control Excel through its COM interface is extremely valuable. Here I’ll
show you how to launch Excel, create workbooks and worksheets, interact with cells,
and create pivot tables—all from PowerShell. Then I’ll provide a reusable function,
Out-ExcelPivotTable, that can be applied in a variety of ways.

144 | Chapter 10: PowerShell, COM, and More

Using PowerShell to automate COM-enabled application is not limited
to Excel.

(New-Object -ComObject Sapi.SpVoice).Speak("Hello PowerShell!")

Let’s step through some of the basics to help you see how the pieces come together and
also give you a sense of what you can do with other COM-enabled applications.

Making Excel Visible
Lifting the New-Object call in the previous examples, we can set the Visible property
to true to launch Excel (see Figure 10-3).

$xl = New-Object -ComObject Excel.Application
$xl.Visible = $true

Notice that Excel is up and running, but doesn’t have a workbook or worksheets. Let’s
fix that.

Figure 10-3. Making Excel visible

Automating Excel from PowerShell | 145

Creating a Workbook and Worksheets
Creating a workbook or worksheet is easy! We’ll add one line of PowerShell and call
the Add() method on the Workbooks object to tell Excel to create a default workbook
that has three worksheets defined (see Figure 10-4).

$xl = New-Object -ComObject Excel.Application
$xl.Visible = $true
$xl.Workbooks.Add() | Out-Null

Now, we’ll populate Sheet1.

Putting the Date in a Cell in an Excel Worksheet from PowerShell
Working from the previous PowerShell script, we capture the new workbook in the
$workbook variable, grab Sheet1 through the Item() method on the Worksheets object,
and then access Cell A1 with the Item() method on the Cells collection. Here we set
the cell value to the current date and time from PowerShell using the Get-Date cmdlet;
see Figure 10-5.

The Excel model requires you to access it not by row column name A1, but rather by
Row and Column numbers. This makes it easier to programmatically access cells directly.

$xl = New-Object -ComObject Excel.Application
$xl.Visible = $true

$workbook = $xl.Workbooks.Add()

Figure 10-4. Create a workbook from PowerShell

146 | Chapter 10: PowerShell, COM, and More

$sheet1 = $workbook.Worksheets.Item(1)
$sheet1.Cells.Item(1,1) = Get-Date

These five lines are a fundamental foundation for automating Excel from PowerShell.
You can easily take any PowerShell collection, list, or array; loop through it and incre-
ment a row counter (and/or column counter); and place data into cells.

Next up, we’ll do just that as well as cover how to call the Create() method on the
PivotCaches object to display Excel pivot tables.

Setting Up Pivot Tables in Excel
In this final Excel example, we’ll transform some raw data from a CSV file into an Excel
pivot table. The data is a set of marketing and sales department professionals, their
salary, and the number of years they have been employed. The first question we want
to answer is how much the departments are being paid (see Figure 10-6).

We use the built-in PowerShell cmdlet to read the CSV file, which turns the data into
objects with properties, and then pipe it to our script, specifying the properties we want
to pivot on. This yields the results shown in Figure 10-6.

Import-Csv .\people.csv |
 .\Out-ExcelPivotTable.ps1 name dept salary

Out-ExcelPivotTable is worth reading, so get the scripts and take a look.

I’ll highlight some snippets here. At its core, Out-ExcelPivotTable iterates over the data
in the pipeline and lays it out in rows and columns in the spreadsheet. Along the way,

Figure 10-5. Date in cell from PowerShell

Automating Excel from PowerShell | 147

it captures the number of rows and columns, the names of the properties on the object,
and their data types. The property names are used in the pivot table to set up both the
Row Field and Column Field information. This creates the dimensions and measures
for us to do analysis.

The data types of the properties are used to create smart defaults for the pivot table. If
the data type is numeric, the defaults are set to Data Field (the measures); otherwise,
they are set to Row Field or Column Field (the dimensions).

Building an Excel Pivot Table in PowerShell
Typically when I work with Excel, I’ll turn on macro recording, click around the
application to get what I want—in this case, a programmatic way to build Excel pivot
tables—and then manually transcode the Visual Basic for Applications output into
PowerShell. The variables $xlDatabase and $xlPivotTableVersion12 are constant values
I defined in the PowerShell script.

$PivotTable = $Workbook.`
 PivotCaches().`
 Create($xlDatabase,`
 "Sheet2!R1C1:R$($rowCount)C$($columnCount)",`
 $xlPivotTableVersion12
)
$PivotTable.CreatePivotTable("Sheet1!R1C1") | Out-Null

Here’s the code filtering out numeric data types and creating the PivotFields with the
orientation of Data Field (the measures):

$columns |
 Where { $_.definition -match "double|int|float"} |
 ForEach {
 $PivotFields = $Sheet1.`
 PivotTables("PivotTable1").`
 PivotFields($_.Name)

Figure 10-6. Marketing vs. sales

148 | Chapter 10: PowerShell, COM, and More

 $PivotFields.Orientation=$xlDataField
}

This feature of the script inspects the data type of the data for numbers, and then uses
them as a Value in the pivot table; otherwise, it uses the data as a Row Label.

This illustrates the “principle of least surprise”—users can pipe some data to a function
and get an Excel pivot table laid out in a usable format. Then, the users can think about
it, type some more, pass parameters to Out-ExcelPivotTable, and get what they want:
a differently shaped pivot table. Think a bit, type, and get what you want—that’s what
PowerShell delivers.

Now let’s see how to leverage another core PowerShell principle—discovery.

Discovering Other COM Applications to Automate
Microsoft keeps a list of COM applications in the Windows Registry. PowerShell’s Get-
ChildItem cmdlet, aliased to dir and ls (for those UNIX grads), can easily access the
Windows Registry. On my Windows 7 box, I can run this script (adapted from http://
bit.ly/Jirftt) and see that there are 2,400 COM applications registered.

param([string]$ProgId)

$paths = @("REGISTRY::HKEY_CLASSES_ROOT\CLSID")

if ($env:Processor_Architecture -eq "amd64") {
 $paths+="REGISTRY::HKEY_CLASSES_ROOT\Wow6432Node\CLSID"
}

Get-ChildItem $paths -Include VersionIndependentPROGID -Recurse |
 ForEach {
 New-Object PSObject -Property @{
 ProgId = $_.GetValue("")
 '32Bit' = & {
 if ($env:Processor_Architecture -eq "amd64") {
 $_.PSPath.Contains("Wow6432Node")
 } else {
 $true
 }
 }
 }
 } | Where {$_.ProgId -match $ProgId}

Now we can invoke it and count the number of ProgIds registered using the Measure-
Object cmdlet.

PS C:\> .\GetProgID.ps1 | Measure

Count : 2400
Average :
Sum :
Maximum :

Discovering Other COM Applications to Automate | 149

http://bit.ly/Jirftt
http://bit.ly/Jirftt

Minimum :
Property :

Even Google has installed some COM applications.

PS C:\> .\GetProgID.ps1 google

ProgId

GoogleUpdate.Update3COMClassUser
GoogleUpdate.Update3WebUser
GoogleUpdate.OnDemandCOMClassUser
Google.OneClickProcessLauncherUser
GoogleUpdate.CredentialDialogUser

And here is a list of ProgIds that have either Excel or Word in them. Notice the fourth
one down is the ProgId used in the examples in this chapter.

PS C:\> .\GetProgID.ps1 'excel|word'

ProgId

DTS.ConnectionManagerExcel
DTSAdapter.ExcelDestination
DTSAdapter.ExcelSource
Excel.Application
Excel.Chart
Excel.ChartApplication
Excel.OpenDocumentSpreadsheet
Excel.Sheet
Excel.SheetBinaryMacroEnabled
Excel.SheetMacroEnabled
IAS.ChangePassword
InfoPath.DesignerExcelImport
InfoPath.DesignerWordImport
OneNote.WordAddinTakeNotesButton
OneNote.WordAddinTakeNotesService
STSServer.EnumSTSWORDEDIT
VS10ExcelAdaptor
VS10WordAdaptor
Word.Application
Word.Basic
Word.Document
Word.DocumentMacroEnabled
Word.OpenDocumentText
Word.Picture
Word.Template
Word.TemplateMacroEnabled

There is a lot to discover in the Windows Registry where COM applications are con-
cerned. You can Google for these ProgIds, see how others have used them, and then
work up your own PowerShell solutions as an alternative.

150 | Chapter 10: PowerShell, COM, and More

Automating Internet Explorer as a COM Application
As a last example, we’ll automate Microsoft Internet Explorer (IE) through its COM
interface. Using GetProgID, we can search for the full ProgId based on a partial string.
Then we can take the result and plug it into New-Object.

PS C:\> .\GetProgID.ps1 Explorer

ProgId

InternetExplorer.Application

After instantiating IE, we’ll call the Navigate2() method and pass it the Bing URL. When
you instantiate IE, it is not visible; you need to set the Visible property to $true.

$ie = New-Object -ComObject InternetExplorer.Application
$ie.Navigate2('http:\\www.bing.com')
$ie.Visible = $true

We could have launched the Bing search website another way: start http://www.bing
.com. The difference is that start (the alias for Start-Process) launches the website in
the default browser on your system. Using the COM automation approach, we ensure
it launches in IE.

Last, from PowerShell we’ll launch IE, navigate to Bing, turn off the address bar, go full
screen, and show the browser.

$ie = New-Object -ComObject InternetExplorer.Application
$ie.Navigate2("bing.com")
$ie.AddressBar = $false
$ie.FullScreen = $true
$ie.Visible = $true

Summary
We covered several key concepts in this chapter—for example, writing data to files
with specific extension names and a comma-separated format, then launching Excel
based on that extension name. Using COM automation, we reached in and worked
with functions defined in Excel. Later, we wrote a script that discovered which Excel
functions we could use. Finally, we automated workbooks and worksheets, placed data
in specific cells, and created pivot tables, all through Excel’s COM interface. Letting
PowerShell be the glue between our data acquisition and data analysis, we learned how
to discover what other COM applications exist on our system, then used that technique
to find Microsoft Internet Explorer’s COM name (ProgId) and automate that.

It’s important here to point out the reach that PowerShell has. We were even able to
tap into a decade-plus old technology, COM, from a 21st-century automation platform.
That’s pretty impressive, and it speaks to how much and how far Microsoft is investing
in the PowerShell platform.

But there’s still more to cover, so keep reading.

Summary | 151

http://www.bing.com
http://www.bing.com

CHAPTER 11

PowerShell Version 3

As of this writing, PowerShell v3 has been making its way to the public in the form of
technology previews and with Microsoft Windows 8 and Windows Server 2012. The
CTPs require Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, and
Windows Server 2008 Service Pack 2 (http://bit.ly/KKXSBM).

PowerShell v3 kicks things up a notch and is a multifront automation package. Win-
dows Server 2012 delivers over 2,300 PowerShell cmdlets, up from 400. The product
is better, faster, and more reliable; PowerShell has been refitted to use the Dynamic
Language Runtime, or DLR (see http://bit.ly/198u7X).

As Joel Bennett notes, because PowerShell 3 is based on the DLR,
“scripts and functions are no longer (re)interpreted each time they’re
run; rather they are compiled, executed, and (sometimes) cached.” For
more details, see Joel’s article here: http://bit.ly/z4qwkB.

PowerShell v3 also delivers on the client, adding more functionally across the board
and making life easier to automate so we can do more business and add more value.

There is way too much to cover, so I’m going to pull out the PowerShell v3 pieces that
I think highlight its benefits best. I (highly) recommend you install PowerShell v3,
specifically Windows 8, and use this new version. PowerShell is not going away. Your
investment in it not only makes you more productive, but it’ll also help you rethink
how to accomplish your daily tasks and write the components you deliver to clients.

PowerShell Workflows
First up is Windows PowerShell Workflow (PSWF). PSWF is the latest addition to the
PowerShell family. A workflow is a set of activities that is stored as a model and depicts
a process. The decision to integrate workflows into PowerShell starts with cloud com-
puting and Windows-based datacenters.

153

http://bit.ly/KKXSBM
http://bit.ly/198u7X
http://bit.ly/z4qwkB

Cloud computing provides a set of highly available, scalable computing
services that leverage high-volume components (servers, disks, RAM,
etc.). High-volume components are less reliable than their tier-one
counterparts, and even those occasionally fail. The key to cloud com-
puting management is to use software to deliver a reliable service in spite
of failures. This is where workflows come in. Workflows are typically
long-running scripts that are designed to survive component or network
errors and reboots.

By automating tasks and operations, workflows decrease costs and improve repeata-
bility, quality, auditing, and logging. This in turn allows you to take on more business
and increase the value of your employees by freeing them up to deliver higher-quality
functions.

PSWF allows developers to author sequences of activities that are:

• Long-running

• Repeatable

• Frequent

• Parallelizable

• Interruptible

• Suspendable

• Restartable

I’m going to dial into two ways you can author workflows. There are lots of resources
on the Web that drill down on them, too. In addition, Microsoft will be making details
available that analyze the new constructs in depth.

PowerShell Script-Based Workflow
PSWF is used to create applications that execute an ordered business process, such as
the steps needed to approve a document, hire a candidate for a position, or make a
purchase. These processes can execute in a short amount of time, but are typically long-
running, in which case the application will need to shut down to conserve memory
between steps.

Coupling workflow functionality with PowerShell lets you apply the benefits of work-
flows to the automation capabilities of PowerShell.

PSWF enables IT pros and developers alike to author sequences of mul-
ticomputer management activities—that are either long-running, re-
peatable, frequent, parallelizable, interruptible, stoppable, or restarta-
ble—as workflows.

154 | Chapter 11: PowerShell Version 3

As a demonstration, we’ll create a workflow with four workflow activities. Three are
WriteLine activities, and the fourth is a Delay activity. There is a new keyword, work
flow. Like a function, it takes a name and a script block. This PowerShell script is
transcoded into XAML workflow representation. The Start-Sleep is transcoded into
a Delay workflow activity, and the other three into WriteLine workflow activities.

workflow Workflow1 {
 "Hello World"
 "Waiting 5 seconds..."
 Start-Sleep -Seconds 5
 "Goodbye"
}

Running the Workflow
We can run the workflow just like any other PowerShell function, as shown here. It
looks and acts just like a normal function, but that is only the beginning.

PS C:\> Workflow1

Hello World
Waiting 5 seconds...
Goodbye

PS C:\>

We could also tack on the –AsJob switch, and this workflow would run as a background
job. Again, this is only the beginning. Read on to see more.

Running the Workflow on Other Boxes
Using the workflow statement does a lot of work for you. It transcodes the PowerShell
into XAML, code-generates a function, and adds a number of parameters to it. One of
the parameters added is –PSComputerName. This parameter lets you specify any number
of boxes on which to run this workflow. Here we’re specifying two boxes:

Workflow1 -PSComputerName finked-pc, finked-pc1

Discovering More About Your Workflow
We can use the PowerShell Get-Command to discover more about the workflow we cre-
ated. As you know by now, discovery is a key tenant of PowerShell. Being able to drill
deeper on objects and structures inside a PowerShell session is fundamental to helping
you get your jobs done faster and with as little friction as possible. Workflows are no
different.

PowerShell Workflows | 155

PS C:\>Get-Command Workflow1

Capability Name ModuleName
---------- ---- ----------
Workflow Workflow1

PS C:\>Get-Command Workflow1 -Syntax

Workflow1 [<WorkflowCommonParameters>] [<CommonParameters>]

Let’s take a look at the XAML that this code generated. The XML included here is only
a snippet of 80+ lines of generated XAML:

PS C:\> (Get-Command Workflow1).XAMLDefinition.Workflow1

<ns1:WriteOutput>
 <ns1:WriteOutput.InputObject>
 <InArgument x:TypeArguments="ns4:PSObject[]">
 <ns2:PowerShellValue
 x:TypeArguments="ns4:PSObject[]"
 Expression=""Hello World"" />
 </InArgument>
 </ns1:WriteOutput.InputObject>
</ns1:WriteOutput>

One really nice thing here is that Microsoft has preserved your investment. It has
introduced key workflow capabilities into PowerShell and has done so in such a way
that you can use the same techniques you’ve been using since version 1.

Visual Studio Workflow
Now, we’ll reproduce the same workflow as before using Microsoft Visual Studio and
the Workflow Designer. This will produce a XAML file that we’ll use directly in
PowerShell using the Import-Module cmdlet. The upshot is that we can use any Work-
flow 4.0 XAML created, regardless of whether it was authored in PowerShell v3. The
added benefit is that once the workflow is imported to PowerShell, it is part of the
ecosystem. It’s discoverable, composable, and remotable.

While many of the PowerShell semantics are preserved, there are a
number of breaks from how a PowerShell script operates with a work-
flow. Additionally, due to the conversion process, there are tricks to
nesting workflows that are declared externally from each other (versus
nested workflows). The semantics are different and beyond the scope
of this book.

Furthermore, setting up a workflow in Visual Studio allows you to devise tests for the
flow. And, as your workflow becomes more complicated, you have a visual represen-
tation of it, not just code. However, this is a double-edged sword. Using a designer with
a complicated workflow can make it harder to navigate as compared to just code.

156 | Chapter 11: PowerShell Version 3

We can use Visual Studio to create a new Workflow solution. We double-click the
Workflow1.xaml file in the Solution Explorer (the same one that we discovered using
Get-Command), drag out the WriteLine and Delay workflow activity components from
the toolbox, and set up their properties (see Figure 11-1).

Once saved, the XAML file is ready to be imported.

Import-Module on a XAML workflow

I think you’ll find this piece simple and straightforward, just like working with a
PowerShell module:

PS C:\> Import-Module .\Workflow1.xaml
PS C:\> Workflow1
Hello World
Waiting 5 seconds...
Good bye

This authoring approach gets all the same benefits as a PowerShell script-based
approach, including discoverability and the fact that it can be run on multiple boxes.
If you have workflows that already exist, you can use them in PowerShell (WF v4.0) or
you can work them up from scratch. Options are always good.

Figure 11-1. Windows workflow in the designer

PowerShell Workflows | 157

Getting performance counters in parallel

I often want to collect several Windows performance counters, so I use PowerShell’s
cmdlet Get-Counter. This cmdlet works off the same data as Perfmon. For example, here
we’ll retrieve the info for % Processor Time:

PS C:\> Get-Counter '\Processor(*)\% Processor Time'

3/17/2012 3:21:05 PM \\finked-pc1\processor(0)\% processor time :
 1.53800515935968

 \\finked-pc1\processor(1)\% processor time :
 4.61494249812969

 \\finked-pc1\processor(2)\% processor time :
 1.53800515935968

 \\finked-pc1\processor(3)\% processor time :
 3.07647382874469

 \\finked-pc1\processor(_total)\% processor time :
 2.69184926496185

Moving on to collect multiple counters, we could simply create an array of performance
counter strings and foreach over them, passing them to Get-Counter. That would exe-
cute them sequentially, though.

With two tweaks, we can use foreach and make this happen. First, we’ll wrap it in a
workflow, and then we’ll use the new –parallel construct on the foreach statement.
The –parallel for the foreach can be used only inside a workflow.

workflow Invoke-PerfCounter {
 param($counters)

 foreach -parallel ($counter in $counters)
 {
 (Get-Counter $counter).CounterSamples |
 Select -Property Path, CookedValue
 }
}

$counters = '\Processor(*)\% Processor Time',
 '\Processor(*)\% User Time',
 '\Process(*)\Handle Count',
 '\Process(*)\IO Read Operations/sec',
 '\Process(*)\IO Write Operations/sec',
 '\Process(*)\IO Data Operations/sec'

Invoke-PerfCounter $counters

That’s it—we’re collecting and displaying performance data in parallel.

This is another advantage of using workflows in PowerShell: you can parallelize your
work.

158 | Chapter 11: PowerShell Version 3

Why workflows rock

PSWF is a flagship feature in v3. It is a tremendous addition to the ecosystem, and I
expect third-party vendors will both leverage it and provide tools to create some serious
timesaving implementations.

Scripting a workflow has many benefits, and a key one is that we can do it all in
PowerShell. This means when we hit a wall, we have the opportunity to work up some
more PowerShell to integrate workflow with other components or subsystems in the
Windows environment.

At the beginning of the chapter, I listed bullet points for interruptible,
suspendable, and resumable. I have not shown any examples of these
features because it would take entire chapters to treat that material ap-
propriately. Keep an eye on the community blogs and the PowerShell
team blog for exciting details on these as well as the new constructs.

For an excellent drill-down, check out this video of Bruce Payette on
PowerShell Workflows: http://bit.ly/AvoCaS.

Using PowerShell with Web Data: Converting to and from JSON
JavaScript Object Notation (JSON) is a lightweight, text-based open standard designed
for data interchange. Despite its relationship to JavaScript, it is language-independent,
with parsers available for many languages, including PowerShell.

The JSON format is often used for serializing and transmitting structured data over a
network connection. It is used primarily to transmit data between a server and web
application, serving as an alternative to XML.

The following example shows the JSON representation of an object that describes a
person. The object has string fields for first name and last name, has a number field for
age, contains an object representing the person’s address, and contains a list (an array)
of phone number objects.

$json = @"
{
 "firstName": "John",
 "lastName" : "Smith",
 "age" : 25,
 "address" :
 {
 "streetAddress": "21 2nd Street",
 "city" : "New York",
 "state" : "NY",
 "postalCode" : "10021"
 },
 "phoneNumber":
 [
 {

Using PowerShell with Web Data: Converting to and from JSON | 159

http://bit.ly/AvoCaS

 "type" : "home",
 "number": "212 555-1234"
 },
 {
 "type" : "fax",
 "number": "646 555-4567"
 }
]
 }
"@

Converting JSON to PowerShell Objects and Back Again
There’s a one-liner to take a string of JSON and convert it to a PowerShell
representation. The variable $PowerShellRepresentation contains the object, complete
with properties and nested structures:

PS C:\> $PowerShellRepresentation = $json | ConvertFrom-Json

Now, let’s access the string we converted in PowerShell:

PS C:\> $PowerShellRepresentation

firstName : John
lastName : Smith
age : 25
address :
 @{streetAddress=21 2nd Street; city=New York; state=NY; postalCode=10021}
phoneNumber :
 {@{type=home; number=212 555-1234}, @{type=fax; number=646 555-4567}}

Now we’ll pick off the address:

$PowerShellRepresentation.address

streetAddress city state postalCode
------------- ---- ----- ----------
21 2nd Street New York NY 10021

Finally, we’ll grab the phone numbers:

$PowerShellRepresentation.phoneNumber

type number
---- ------
home 212 555-1234
fax 646 555-4567

PowerShell can interoperate with JSON, which is a lighter weight XML. Being able to
consume text and turn it into objects with properties makes it super-easy to get at
information and consume it in the way you need to.

160 | Chapter 11: PowerShell Version 3

This isn’t a one-way ticket, though; we can take the round-trip. We’ll take the JSON
we converted to PowerShell and pipe it to ConvertTo-Json, and it will produce the JSON
string we started with originally.

$PowerShellRepresentation | ConvertTo-Json

This means we can work in PowerShell, doing directory listings (PowerShell objects),
reading XML (PowerShell objects), calling methods on .NET DLLs, getting results
(PowerShell objects), and more. Then, we can pipe results to Convert-ToJson, and we’re
ready to interact with services that accept JSON.

What If a Web/REST Service Returns JSON?
If JSON is returned by a web or representational state transfer (REST) service, no
problem—PowerShell has a cmdlet that makes it incredibly easy to handle the request
and conversion all in a couple of lines of script:

$url = 'http://search.twitter.com/search.json?q=powershell'
(Invoke-RestMethod $url).results

Or even less if we use an alias:

(irm $url).results

Here is the first element of the array returned from the Twitter search we just ran.
Remember, each is accessible via the property name. Plus, because we are working with
PowerShell, we can leverage PowerShell’s other cmdlets, like Export-Csv, and pipe the
results to a comma-separated value file. This preps it for use in Excel, for example.
That’s a great return on a single line of code.

created_at : Sat, 24 Mar 2012 16:54:47 +0000
from_user : denisemc06
from_user_id : 78444415
from_user_id_str : 78444415
from_user_name : Denise McInerney
geo :
id : 183597742919135233
id_str : 183597742919135233
iso_language_code : en
metadata : @{result_type=recent}
profile_image_url : http://a0.twimg.com/profile_images/1637362430/
headshot3_small_normal.jpg
profile_image_url_https : https://si0.twimg.com/profile_images/1637362430/
headshot3_small_normal.jpg
source : <a href="http://www.tweetdeck.com"
rel="nofollow">TweetDeck
text : Getting #powershell schooling from @SQLvariant at #sqlsat120
to_user :
to_user_id :
to_user_id_str :
to_user_name :

Using PowerShell with Web Data: Converting to and from JSON | 161

So, we can now consume and produce JSON, the Internet lingua franca. We can query
REST services and let PowerShell automatically convert JSON to PowerShell objects,
which can be piped to other PowerShell functions/cmdlets and transformed to different
shapes and formats. Anytime I find myself reaching for cUrl or wget, I first check if I
can do what I need in PowerShell v3.

Creating an Instance of a Microsoft .NET Framework Object
There is a welcome improvement to the PowerShell v3 toolbox: PSCustomObject. In
typical PowerShell fashion (which shows Microsoft is listening), PSCustomObject
reduces the amount of code you produce and improves results.

In previous versions of PowerShell, you’d use the New-Object cmdlet, passing it a Type
Name of PSObject, and a hash table to create an object with properties.

New-Object PSObject -Property @{
 FirstName = "Donald"
 LastName = "Knuth"
}

An unwanted side effect of this approach was that you needed additional code to get
the properties to appear in the order you wanted:

LastName FirstName
-------- ---------
Knuth Donald

PSCustomObject handles this, and in less code:

[PSCustomObject] @{
 FirstName = "Donald"
 LastName = "Knuth"
}

PSCustomObject is now the preferred way to create a new object and add properties:

FirstName LastName
--------- --------
Donald Knuth

While we’re on this subject, I want to point out that PowerShell v3 lets you create
objects by passing a hash table with their property values. This is similar to object and
collection initializers in C#.

Add-Type -TypeDefinition @"
namespace Example {
 public class Test {
 public string FirstName {get; set;}
 public string LastName {get; set;}
 }
}
"@

[Example.Test] @{

162 | Chapter 11: PowerShell Version 3

 FirstName = "Donald"
 LastName = "Knuth"
}

This is a very handy way to work with .NET and creating objects, as you can see from
the following outcome:

FirstName LastName
--------- --------
Donald Knuth

If you want to create an object with a known type, the type must have
a default constructor—that is, one with no parameters.

Get-Content –Tail
Before PowerShell v3, you could not easily tail a file using PowerShell. Tail is a program
on UNIX and UNIX-like systems used to display the last few lines of a text file or piped
data (http://en.wikipedia.org/wiki/Tail_(Unix)).

This is very handy to use when you’re looking at a logfile that is being written to. To
quickly simulate this, launch PowerShell. Type notepad test.txt and press Enter.
Notepad will prompt you to create a new file if necessary. Enter a few lines of data, like
1, 2, 3, on separate lines, and save the file. Switch back to the PowerShell console and
type this:

Get-Content .\test.txt -Wait -Tail 1

Get-Content reads the contents of a file. The –Wait parameter waits for contents to be
appended to the file. The –Tail parameter indicates how many lines from the end of
the file are read.

So, to summarize, firing up that line of code in the console will make it sit there and
spit out the last line of the target file every time it is updated.

ISE v3
The PowerShell team has been hard at work improving the Integrated Scripting
Environment (ISE). Just type ise at the PowerShell command line, and you’re in. ISE
is part of the PowerShell v2/v3 install (Figure 11-2). It uses the Visual Studio edit control
and supports a similar workflow to Visual Studio itself. Type some code in the script
pane and press F5; it runs the script, showing the results in the console pane. In addi-
tion, ISE v3 supports syntax highlighting and debugging.

ISE v3 | 163

http://en.wikipedia.org/wiki/Tail_(Unix)

On Server operating systems, ISE is an optional feature and it cannot be
used on the Server Core installation option.

Pressing F9 toggles a debug breakpoint; press F5 to run the script, and ISE will break
at that line. You can hover over variables to see their value, and you are in a suspended
PowerShell session. Drop down to the console pane, and you can type out variables
and inspect the current state of the session.

PowerShell ISE v3 brings many other new features, like code folding, snippets, and
IntelliSense, at several levels. As you type cmdlets or functions, the drop-down filters
the list. In addition, when you type a hyphen (-) for a parameter, context-sensitive
IntelliSense presents a list of parameters for just that cmdlet or function.

When working on scripts longer than a single line, you’ll find ISE v3 is a valuable tool
for sifting through code and debugging problems.

If you are comfortable editing code in Visual Studio, you’ll be right at home with ISE v3.

Out-GridView and the -PassThru Parameter
Out-GridView is such a handy tool—think of it as injecting a GUI into your command
line. Considering it this way can lead you toward building very powerful components.

In PowerShell v3, Out-GridView got a new parameter, -PassThru (Figure 11-3). When
specified, -PassThru sends the selected items from the interactive window down the
pipeline as input to other commands.

Out-GridView also has a parameter, -OutputMode, which can take one of
three values: None | Single | Multiple. Choosing Multiple is the same as
using –PassThru.

Figure 11-2. PowerShell ISE v3 code folding and IntelliSense

164 | Chapter 11: PowerShell Version 3

Here we want to view all the stopped services in Out-GridView. Plus, we want to be able
to select one or more of the services, and when we click OK, those services—and only
those services—will start.

Get-Service |
 Where Status -eq Stopped |
 Out-GridView -PassThru |
 Start-Service

If none is selected or the Cancel button is clicked, no services are sent down the pipeline
and nothing happens.

We wrapped that previous snippet in a function, Show-StoppedService. How many
others can you think of to wrap like this and make life simpler?

function Show-StoppedService {
 Get-Service |
 Where Status -eq Stopped |
 Out-GridView -PassThru |
 Start-Service
}

Scheduling Jobs
PowerShell’s scheduled jobs are a useful hybrid of PowerShell background jobs and
Windows Task Scheduler tasks. (See more info at http://bit.ly/H5AoYW.)

Figure 11-3. Out-GridView and the –PassThru parameter

Scheduling Jobs | 165

http://bit.ly/H5AoYW

Let’s see what commands are exported from the PSScheduleJob module:

PS C:\> Import-Module PSScheduledJob
PS C:\> (Get-Module PSScheduledJob).ExportedCommands.Keys

Add-JobTrigger
Disable-JobTrigger
Disable-ScheduledJob
Enable-JobTrigger
Enable-ScheduledJob
Get-JobTrigger
Get-ScheduledJob
Get-ScheduledJobOption
New-JobTrigger
New-ScheduledJobOption
Register-ScheduledJob
Remove-JobTrigger
Set-JobTrigger
Set-ScheduledJob
Set-ScheduledJobOption
Unregister-ScheduledJob

Scheduled jobs have a ton of capability, like triggering when the battery status changes,
when the network is connected, when the system is idle, and much more. Keep an eye
out for lots of functionality from the PowerShell community in this area.

There are three steps to working with a scheduled job: create a trigger New-JobTrig
ger, register it with Register-ScheduledJob, and after it has run, retrieve its results with
Get-Job | Receive-Job.

If not in the same PowerShell session where the commands were in-
voked, you’ll need to import the PSScheduledJob module so that you can
read the status of PowerShell scheduled jobs.

Now, I want to combine steps one and two as an example and show how you can
compose your own solutions to make scheduling a task simple.

Let’s say we want to run a job one time five seconds from now to get the services running
on our system. Here is what we’d like to type at the console:

Start-ScheduledJobIn TestGetService 5 {Get-Service}

Here’s the Start-ScheduledJobIn function:

function Start-ScheduledJobIn {
 param (
 [string]$Name,
 [int]$SecondsFromNow,
 [ScriptBlock]$ScriptBlock
)

 $trigger = New-JobTrigger `
 -Once `

166 | Chapter 11: PowerShell Version 3

 -At (Get-Date).AddSeconds($SecondsFromNow)

 Register-ScheduledJob `
 -Name $Name `
 -ScriptBlock $ScriptBlock `
 -Trigger $trigger
}

We can expand this function in many ways, but it is important to note that:

• You need to run Unregister-ScheduledJob to remove the scheduled job.

• You need to use Get-Job TestGetService | Receive-Job to see the results of its
execution.

These few commands help you get familiar with scheduled jobs so you can work with
them. Since it is all PowerShell-based, customizing solutions for specific scenarios is
simple and plays to PowerShell’s scenario-based development.

Invoke-WebRequest and Invoke-RestMethod
Invoke-WebRequest and Invoke-RestMethod are two new cmdlets that make working
with the Web easier. They are used for two different endpoints.

Invoke-WebRequest is great because it parses the response, exposing collections of forms,
links, images, and other significant HTML elements.

This next snippet retrieves a chunk of PowerShell from the URL, which is then evaluated
with Invoke-Expression. The Invoke-Expression cmdlet evaluates or runs a specified
string as a command and returns the results of the expression or command. I suggest
you run it to experience it.

Invoke-Expression (Invoke-WebRequest http://bit.ly/e0Mw9w).Content

In the final release of PowerShell v3, it may be possible to use fewer characters as
follows. Here we’re using the aliases of the two cmdlets and dropping the .Content.

iex(iwr http://bit.ly/e0Mw9w)

Invoke-RestMethod can make requests to REST-compliant (“RESTful”) web services. It
returns HTML responses as HTML documents and JSON responses as JSON objects.

One of Invoke-RestMethod’s parameters is –ReturnType, which can be set to Detect,
Json, or XML. The default is Detect. This lets you retrieve and output an XML RSS feed
in one line of PowerShell, compared to three lines of PowerShell in v2. That’s a 66%
savings.

Invoke-RestMethod http://goo.gl/ZC76L | Select Title, PubDate

Here are the results of the Invoke-RestMethod line of code in XML, neatly packaged as
PowerShell objects with properties:

Invoke-WebRequest and Invoke-RestMethod | 167

title pubDate
----- -------
I'll be Judging the PowerShell 2012 Scripting Games Mon, 12 Mar
Using PowerShell v3 to consume the StackOverflow JS... Thu, 09 Feb
PowerShell Script to List the Organizations Support... Sat, 21 Jan
Using PowerShell to solve Project Euler: Problem 1 Sun, 08 Jan
PowerShell and IEnumerable<T> Sat, 24 Dec
PowerShell, Windows Azure and Node.js Sat, 17 Dec
How to find the second to last Friday in December-U... Sat, 17 Dec
PowerShell - Using the New York Times Semantic Web ... Sun, 04 Dec
My First PowerShell V3 ISE Add-on Sun, 04 Dec
Use PowerShell V3 to Find Out About Your Twitter Fo... Thu, 24 Nov

You could also slice and dice Twitter search results for PowerShell tweets:

(Invoke-RestMethod http://goo.gl/Vdyji).results |
 Select from_user, created_at, text

The same cmdlet is used for the RSS feed retrieval; this time, JSON was returned and
parsed to create PowerShell objects with properties:

from_user created_at text
--------- ---------- ----
mariettol Sun, 18 Mar Check out Microsoft Script Explorer f
PSdownunder Sun, 18 Mar If you're having trouble getting to t
clintonskitson Sun, 18 Mar RT @jsnover: When Windows PowerShell
chrisbrownie Sun, 18 Mar The #psdu web site is struggling a li
Clarkezone Sun, 18 Mar Windows Azure PowerShell Cmdlets http
mwjcomputing Sun, 18 Mar RT @proxb: 2012 Scripting Games start
Cliff__Davies Sun, 18 Mar Check out this article on http://t.co
ihunger Sun, 18 Mar #PowerShell Use PowerShell to Find an
KzSundaySilence Sun, 18 Mar RT @JeffHicks: Video: Bruce Payette -
JeffHicks Sun, 18 Mar Video: @jamesoneill shares his #Power
proxb Sun, 18 Mar 2012 Scripting Games start 2 weeks fr
TCEJobs Sun, 18 Mar Build Engineer - Powershell - Documen
mrpjscott Sun, 18 Mar RT @PSdownunder: Released today: Our
ATLPUG Sun, 18 Mar [ATLPUG] International PowerShell Use
AllEngineerJobs Sun, 18 Mar Build Engineer - Powershell - Documen

PowerShell v3 Items That Are a Must-See
PowerShell v3 brings numerous updates to the table in the form of fixes, additions,
performance improvements, and more reliability. Other improvements are better
discoverability and syntax simplification.

Show-Command
When you launch PowerShell, you are looking at a blank screen. That’s a tough way
to get started if you haven’t spent time within the environment. With PowerShell v3,
you can type Show-Command and press Enter. You will be presented with a dialog, as
shown in Figure 11-4. From here, you can filter the list either by using the drop-down
to select a PowerShell module, typing a command in the text box, or selecting a

168 | Chapter 11: PowerShell Version 3

command in the list box. Once you’ve selected a function/cmdlet, you can begin to
drill down into the details of that selection. You’ll be presented with the parameters
that the command supports, and you can provide values for them in the dialog itself.

From there, you can run the command directly by clicking the run button or copy it to
the clipboard by clicking copy. In other words, you can copy and paste the correctly
formed PowerShell line, complete with parameters and values. Another nice feature of
the dialog is that if a parameter is an enumeration, it shows up in a drop-down list.

Show-Command also lets you specify a function or cmdlet as a parameter. It shortcuts your
searching for it (see Figure 11-5).

Show-Command Get-Command

Finally, Show-Command can be docked in the ISE. You can toggle this using the View menu
(see Figure 11-6).

Figure 11-4. Show-Command dialog

PowerShell v3 Items That Are a Must-See | 169

In Figure 11-7, you can see that the Show Command dialog is docked and ready. Note
the context change of the button. After finding and setting the parameters of your
command, you can select the Insert button to insert the final result into the console
pane, ready for execution.

Figure 11-5. Show-Command for a specific cmdlet

Figure 11-6. Enabling Show-Command in ISE

170 | Chapter 11: PowerShell Version 3

Less Typing for ForEach and Where
In PowerShell v3, Microsoft introduces a simplified syntax for the Where and ForEach
cmdlets. The $_ (current object automatic variable), braces {}, and dot operators are
no longer required for simple constructs. Here is a Where-Object example:

Get-Process | Where Handles -gt 700

Compare this to the old version:

Get-Process | Where {$_.Handles -gt 700}

This is for simple, single comparisons only. Complex evaluations are
not supported.

Execute PowerShell Commands from the Web
Windows PowerShell Web Access lets you manage your Windows machines anywhere
and anytime. (For more information, check out this blog post: http://bit.ly/ykVTOl.)

PowerShell Web Access is an Internet information services (IIS) web application that
provides a PowerShell console in a web browser. The IIS application acts as a gateway
from which you can connect to any machine in your environment that has PowerShell
remoting enabled. Figure 11-8 shows a PowerShell console loaded up in a browser.

Figure 11-7. Show-Command docked in ISE

PowerShell v3 Items That Are a Must-See | 171

http://bit.ly/ykVTOl

Windows PowerShell Management ODATA IIS Extensions
Management ODATA IIS extensions enable a PowerShell scripter to expose a set of
PowerShell cmdlets as a RESTful web endpoint accessible via the open data protocol
(ODATA). This provides remote access to invoke cmdlets from both Windows and
non-Windows clients. Check out the Management ODATA web services dev tools at
http://bit.ly/GPvin8.

Management ODATA is an infrastructure for creating an ASP.NET web service end-
point that exposes your management data, accessed through PowerShell cmdlets and
scripts, as ODATA web service entities. It does that by processing ODATA requests
and converting them into a PowerShell invocation.

Product teams will build on top of this infrastructure to create endpoints that expose
specific sets of management data.

Summary
Gartner, Inc. is the world’s leading information technology research and advisory com-
pany, and one of the services it provides is forward-looking analysis. One of Gartner’s
predictions back in 2011 was that “tools and automation will eliminate 25% of labor
hours associated with IT services” (http://bit.ly/h5l06S).

Figure 11-8. PowerShell console loaded up in a browser

172 | Chapter 11: PowerShell Version 3

http://bit.ly/GPvin8
http://bit.ly/h5l06S

In this spirit, and as this chapter has outlined, we as developers can use PowerShell and
these new v3 additions to enable automation:

• Streamlining activities

• Improving repeatability

• Improving quality

• Improving turnaround time

In the end, we can reclaim that 25%—or 10 hours in a 40-hour period—to do real
problem solving.

Summary | 173

APPENDIX A

Productive PowerShell

I recently saw a tweet saying, “If you repeat it, PowerShell it.” I couldn’t agree more.

In this appendix, I want to share a spectrum of examples to illustrate PowerShell’s reach
and primarily, to demonstrate that learning and using PowerShell in your day-to-day
tasks will save you time. It’s easy to sit back and think, “It’s just a simple scripting
language; I don’t have time to invest in another technology that may not pan out,” or
“It’ll take longer to automate than it will to just do it, and there are only a few steps to
this, so I’ll knock it out.”

PowerShell’s depth and reach is more than you can imagine, and growing every day.
Plus, it is dynamic and powerful enough that if either Microsoft or the PowerShell
community hasn’t delivered a solution, PowerShell itself can take you the last mile.

Automation is quickly moving from a “nice to have” feature to critical
for delivering software in an ever-changing landscape.

Here, I’ll present some places where developers choose not to automate, and I’ll provide
some PowerShell automation alternatives. In addition, one of the great perks of being
a PowerShell MVP is being in the company of outstanding PowerShell MVPs (Ta-
ble A-1). This is a group of passionate, smart people who are leveraging PowerShell in
so many creative ways. Luckily for us, they are also generous—they have shared ideas
and PowerShell snippets for me to include here.

Table A-1. PowerShell scripters and MVPs

Scripter URL

Joel Bennett http://bit.ly/H0FiFA

Keith Hill http://bit.ly/H45PRm

Karl Prosser http://bit.ly/Hv3YsM

Daniel Moore http://bit.ly/HeYsHV

175

http://bit.ly/H0FiFA
http://bit.ly/H45PRm
http://bit.ly/Hv3YsM
http://bit.ly/HeYsHV

Scripter URL

Aleksandar Nikolic´ http://bit.ly/H6ZFB7

Getting Automation Approved
Neal Ford published a book titled The Productive Programmer (O’Reilly), and I’ve
always liked the scenario he put forward involving the deployment of one’s application.
It takes only three steps: run the proper scripts in the database, copy the DLLs to the
correct server(s), and update the config files for database connections, routing,
permissions, and so on.

It is simple and straightforward, and takes 15–20 minutes. You’ll do this only once,
maybe twice, a week.

Ford then adds a “what if?”—what if the project lasts eight months? That’s:

• Doing 64 deployments (even more at the end of an iteration and the final push)

• 64 ∗ 15 minutes = 960 minutes = 16 hours = 2 workdays

This is an optimistic two days. Inevitably we forget a step, or one changes slightly, and
then we’re spending a chunk of time tracking it down to fix it, which costs even more
time.

Ford goes on to point out that if it takes less than two days to automate the process,
we’re good to go. But what if it takes three days to automate it? Is it worth it? I would
argue yes. Automating is similar to test-driven development: there is an up-front cost
for research and infrastructure. Once that infrastructure is in place, augmenting and
improving the automation is modest. Of course, you need to keep your eye on how
deep the rabbit hole is so as not to polish endlessly.

Saving Time with Automation
Several of the people I have encountered using PowerShell write scripts for many of
their daily tasks. They do this because they know they’ll probably do the task more
than once, and when they do, the script will save time. Plus, PowerShell is great for
doing ad hoc work and refactoring it for more formal solutions.

176 | Appendix A: Productive PowerShell

http://bit.ly/H6ZFB7

Here’s an example of taking ad hoc PowerShell and making it more
formal:

function Write-Date ($Date) {$Date}
Write-Date "2/29/2010"

This prints the date, but 2010 wasn’t a leap year. If I were the only one
using Write-Date, I probably wouldn’t care much. On the other hand,
if I sent this to other developers/scripters, I’d be concerned about them
stalling and no longer using my script if this happened, so I’d make it
more formal by typing the $Date parameter.

function Write-Date ([datetime]$Date) {$Date}

Now this will throw an error:

Write-Date "2/29/2010"

Write-Date : Cannot process argument transformation on parameter 'Date'. Cannot
convert value "2/29/2010" to type "System.DateTime". Error: "String was not
recognized as a valid DateTime."

Scripting the solution creates living documentation of what and how things were done.
The script can be checked into a version control system and can be rolled back when
problems hit. Down the road, these scripts can be blended into larger, more scalable
solutions for working with many machines, DLLs, and configuration files.

As a final note and again echoing Neal Ford, “Finding innovative solutions to problems
makes it easier to solve similar problems in the future.” This rings true when applying
PowerShell to so many aspects of daily development work. Plus, the more you use
PowerShell, the faster you learn how to wield it. When that happens, that three-day
task becomes two days, then one day, and soon you have a library of composable
PowerShell functions whose whipuptitude factor lets you knock out automation in no
time.

So, to get our creative, innovative juices flowing, let’s take a look at some of the
possibilities and some of the scripts that top PowerShell MVPs use on a regular basis.

Adding Aliases to Your PowerShell Profile
Many developers use different editors to get their jobs done. Rather than navigating
through mouse clicks to get to a shortcut, you can put the following two aliases in your
PowerShell $Profile. After setting this up, you can also pass filenames to the aliases,
and that file will open in the editor.

set-alias npp "${env:ProgramFiles(x86)}\Notepad++\notepad++.exe"
set-alias tp "${env:ProgramFiles(x86)}\TextPad 5\TextPad.exe"

Creating an alias to point at an executable is only one option; you can also create an
alias for the functions you define or for the ones that ship with PowerShell.

Adding Aliases to Your PowerShell Profile | 177

Adding Variables and Functions to Your PowerShell Profile
As you gain experience with PowerShell and work on different tasks, you’ll find yourself
wanting to automate more and more. Take a look at the following shortcuts.

The ql Function
The following function is ql, which stands for quote list.

function ql {$args} # quote list

This is a Perl-ism. It was first seen in the wild when used by Bruce Payette, cofounder
of PowerShell. Let’s see what you can do with it.

If I want to create a list of letters, both of these produce an array. The ql version saves
12 characters.

$letters = "a", "b", "c", "d"
$letters = ql a b c d

This is very useful when you want to get something done in a one-liner on the command
line. When powering through solutions quickly either at the command line or in your
scripts, typing fewer characters and lines of code results in fewer errors and faster
answers.

Adding Variables to $Profile
The PowerShell $Profile is run automatically when a session is started, and it’s a great
place to stash variables containing information you usually are looking for and forget,
like the name of your email server.

$PSEmailServer = "mail.test.com"

This variable can then be used like so:

Send-MailMessage -SmtpServer $PSEmailServer `
 -From test@xyz.com `
 -To test@xyz.com `
 -Body "This is a test"

Storing variables in the PowerShell $Profile is only the beginning. You can create
functions and aliases and import PowerShell modules too. A couple words of caution,
though: if you move to a new machine or rebuild your box, you’ll need to rebuild your
profile. Also, if helping a coworker out, you won’t have your favorite customizations
available.

After editing your $Profile, you can make the changes available in your
current PowerShell session by running it again by dot-sourcing it like
this:

PS C:\> . $Profile

178 | Appendix A: Productive PowerShell

Adding Custom PowerShell Functions
Often, when I’m working with different Visual Studio projects and want to quickly get
to the directories from the command line, I’ll try the following scripts.

Here we’re setting up a function to do a change directory (cd). This makes it quick to
access an area we need. Plus, we can use tab completion at the command line to cycle
through the different ones we’ve set up.

function cdPowerShell { cd "c:\scripts\client\PowerShell" }

As an alternative, we can also create a new drive:

New-PSDrive -Name P -PSProvider FileSystem
 -Root C:\scripts\client\PowerShell

Now we can simply type P: Enter to get to where we need to go.

Quick Access to Launching Visual Studio Solutions
I work on several Visual Studio projects for clients. I always have a PowerShell prompt
and ISE open. For each .sln I work on, I set up a PowerShell function as follows:

function vsTest { & "C:\temp\Test.sln" }

This lets me type vs and then Tab to cycle through all the functions I have available.
When I find the one I like, I press Enter, the Visual Studio IDE launches with the correct
solution, and I’m in business. This is a great way to save time and effort.

When you’re working on projects, these simple techniques will let you power through
finding and launching tools that you need, cutting down on the navigation, point-and-
click routine.

Learning these tidbits helps you get more comfortable with PowerShell, become more
productive, and begin to augment your workflow to make your life simpler when
working on Windows machines.

Remote Desktop Connection
A remote desktop connection lets you sit at a computer and connect to a remote com-
puter in a different location. I always need to remote to another box, and I’m always
forgetting machine names or more are added to solve load problems.

I prefer the keyboard over the mouse.

Remote Desktop Connection | 179

I prefer direct access over navigating icons and menus; it’s faster. In the following script,
we type the parameters as a Switch. From there, we check for their existence in the if
statements.

I like this approach for a couple of reasons. A handful of scripts can get a lot done. We
capture the names of the boxes we want to connect to so we don’t need to memorize
them. Then, we can leverage Tab completion in the console to get the information we
want quickly (see Figure A-1).

function rdp {
 param (
 [Switch]$ClientSQLBox,
 [Switch]$ClientDev,
 [Switch]$ClientIntegrationBox,
 [Switch]$ClientQABox
)

 if($ClientSQLBox) { $server = 'ClientSQLBox' }
 if($ClientDev) { $server = 'ClientDev' }
 if($ClientIntegrationBox) { $server = 'ClientIntegrationBox' }
 if($ClientQABox) { $server = 'ClientQABox' }

 if($server) { mstsc /v:$server }
}

In the PowerShell v3 ISE, we type rdp, then hyphen (-), which tells IntelliSense to get
a remote desktop connection. As you can see, we can easily pick the machine we want
to connect to on that screen.

Truth be told, I prefer PowerShell remoting. If PowerShell is installed
on your machine and the target box, you can run Enable-PSRemoting on
both.

Test to see if you can reach the target machine like this:

Invoke-Command -ComputerName M1 -ScriptBlock {hostname}

Here is the pithy way:

icm M1 {hostname}

This should return M1 from the remote machine or an error describing
why it could not connect.

Figure A-1. Remote desktop machine names

180 | Appendix A: Productive PowerShell

Furthermore, if we’re in the PowerShell console, we can type rdp, then hyphen, and
then keep pressing the Tab key to cycle through each of the boxes. Upon finding the
one that we want, we simply press Enter, and we’re off connecting to that box.

The rdp script is simple to create and lets me automate a task that I’ll do a few times a
week. There are numerous other tasks I repeat over and over. Let’s see how to automate
some of them.

Starting Another PowerShell Session
Often, when working at the command line or in ISE, you’ll want to fire up another
PowerShell session for testing or running an operation that takes a while and slows
progress. Out of the box, you can use Start-Process, which is aliased to Start.

PS C:\> Start PowerShell

We can wrap this in a function, Start-PowerShell. You can choose to alias this to
whatever you’d like—for example, sps.

function Start-PowerShell {
 Start PowerShell
}

This ad hoc function can now be improved on. There are many times I want to test
something in another PowerShell session and be sure that it works without my profile.
Here goes:

function Start-PowerShell {
 param (
 [Switch]$NoProfile
)

 if($NoProfile) {
 Start PowerShell -Args -NoProfile
 } else {
 Start PowerShell
 }
}

Now I can type Start-<Tab> -no, which will launch another PowerShell console win-
dow without loading my profile—a big timesaver.

Start-Process is versatile; following are some more things you can do with it.

Start-Process Can Do More
The Start-Process cmdlet can also launch a web page in your default browser. From
the command line, we can fire up searches on Google, for example.

function Search-Google {
 param(
 [Parameter(ValueFromPipeline=$true)]

Starting Another PowerShell Session | 181

 [string]$query
)

 Process {
 Start "https://www.google.com/search?q=$query"
 }
}

Here we launch three tabs in our default browser—one each for win32_service,
win_bios, and powershell.

ql win32_service win_bios powershell | Search-Google

Using Start to launch a browser and search Google is great, but let’s use this cmdlet
to do something more practical. Typically when I’m working on a project, I need to
have several web pages open—one each for the continuous integration server, the bug
tracking system, the agile management tool, and a timesheet tracking tool, just to name
a few.

function Show-CI { Start "http://CIServer }
function Show-Bugs { Start "http://BugServer }
function Show-Agile { Start "http://AgileServer }
function Show-Timesheet { Start "http://TimeSheet }

Now I can launch each web page from the command line, eliminating the use of the
mouse to navigate to the page—time saved!

Finally, when I come in on Monday, after my machine is rebooted, I have a function,
Show-WorkTool, that will fire up all those web pages in a single shot:

function Show-WorkTool {
 Show-CI
 Show-Bugs
 Show-Agile
 Show-Timesheet
}

Using PowerShell’s Tokenizer
As you create larger and larger PowerShell scripts, developing the habit of organizing
functions into separate files and loading modules is important for two reasons: man-
aging complexity and maintaining the ability to reason through what you’ve built.

By developing this habit, you can look at a directory listing and see at a glance what
makes up the system you’re building. Plus, if you’re working on these scripts with
others, you’ll significantly reduce conflicts while checking in when developing at this
granular level.

However, there may be times when you are working with other people’s scripts, and
they may have chosen to keep all of the functions in a single script file or module.

182 | Appendix A: Productive PowerShell

A Get-Function script will help. Walk up to any directory that contains scripts or mod-
ules, type Get-Function, and press Enter.

This script will:

• Read each file

• Tokenize

• Extract the function name

• Extract the line number the function is on

Tokenizing is the process of breaking up a stream of text into words, phrases, symbols,
or other meaningful elements called tokens. The list of tokens becomes input for further
processing, such as finding a function name.

Function Get-Function ([string]$Pattern, [string]$Path="$pwd") {

 $parser = [System.Management.Automation.PSParser]

 $(ForEach($file in Get-ChildItem $Path `
 -Recurse -Include *.ps1, *.psm1) {

 $content = [IO.File]::ReadAllText($file.FullName)
 $tokens = $parser::Tokenize($content, [ref] $null)
 $count = $tokens.Count

 for($idx=0; $idx -lt $count; $idx += 1) {
 if($tokens[$idx].Content -eq 'function') {

 $targetToken = $tokens[$idx+1]

 New-Object PSObject -Property @{
 FileName = $file.FullName
 FunctionName = $targetToken.Content
 Line = $targetToken.StartLine
 } | Select FunctionName, FileName, Line
 }
 }
 }) | Where {$_.FunctionName -match $Pattern}
}

As an example, we’ll get all the functions defined in the PSDiagnostics module delivered
with PowerShell. Remember, you can also pipe the results to Out-GridView, as shown
in Figure A-2.

The result shows the name of the function found and where it is in the file that contains
it:

PS C:> Get-Function $PSHOME\Modules\PSDiagnostics

FunctionName Line FileName
------------ ---- --------
Start-Trace 22 PSDiagnostics.psm1
Stop-Trace 98 PSDiagnostics.psm1

Using PowerShell’s Tokenizer | 183

Enable-WSManTrace 124 PSDiagnostics.psm1
Disable-WSManTrace 154 PSDiagnostics.psm1
Enable-PSWSManCombinedTrace 159 PSDiagnostics.psm1
Disable-PSWSManCombinedTrace 193 PSDiagnostics.psm1
Set-LogProperties 198 PSDiagnostics.psm1
ConvertTo-Bool 260 PSDiagnostics.psm1
Get-LogProperties 272 PSDiagnostics.psm1
Enable-PSTrace 296 PSDiagnostics.psm1
Disable-PSTrace 327 PSDiagnostics.psm1

This script, Get-Function, helps you find your way around scripts and modules, both
your own and those of others. This becomes very important as the number of scripts
and modules you are working with increases.

Next we’ll look at how we can work with tools that have existed for years and how
PowerShell can automate solutions that will help us become more productive.

PowerShell and Older Tools
PowerShell lets you get creative. It takes a little time and investment to learn how things
fit together, but it is totally worth it. For example, tools you have been working with
for a long time probably output text or XML that can be easily consumed by PowerShell.
This can be a great area to add some PowerShell automation and spin up productive
solutions. Let’s take a look at some examples.

Subversion
Subversion (SVN) sports a command-line utility that lets you interact with svn reposi-
tories. Using this utility in our PowerShell directory, we get these results:

Figure A-2. Get-Function piped to Out-GridView

184 | Appendix A: Productive PowerShell

PS C:\PoSh> svn info

Path: .
Working Copy Root Path: C:\PoSH
URL: https://wush.net/svn/finked/PoSH/trunk
Repository Root: https://wush.net/svn/finked
Repository UUID: 10d2a5bc-2623-0410-be31-c5168cbc2b14
Revision: 1574
Node Kind: directory
Schedule: normal
Last Changed Author: finked
Last Changed Rev: 1574
Last Changed Date: 2012-02-09 20:37:32 −0500 (Thu, 09 Feb 2012)

After a little digging, you’ll discover that Subversion lets you retrieve these results in an
XML format, by specifying the --xml option.

PS C:\PoSh> svn info --xml

Now, here is where we get creative. We know that we can use the XML accelerator
[xml] in PowerShell and then use dot notation to pull out details.

PS C:\PoSh> ([xml](svn --xml info)).info.entry

kind : dir
path : .
revision : 1574
url : https://wush.net/svn/finked/PoSH/trunk
repository : repository
wc-info : wc-info
commit : commit

We’re now programmatically accessing individual details from text returned by a
Subversion command. No parsing, no praying!

Displaying SVN info on your PowerShell prompt

How can we make this even more useful? Using the previous technique, say we want
to see how many files are not under version control, how many items are scheduled for
addition, and how many items have been modified. Plus, we don’t want to type any-
thing in. We simply want to do a cd and see this information at a glance (see Figure A-3).

Add the following script to your PowerShell $Profile, and you’ll get a new
prompt. By writing a function named prompt, you are now substituting the built-in one
for yours.

You need to have the Subversion command-line utility installed for this
Subversion script to work.

There are several goodies in this script—overriding the built-in prompt, working with
the $host variable, and using the switch statement.

The script.

PowerShell and Older Tools | 185

The switch statement is the most powerful statement in the PowerShell
language. It combines pattern matching, branching, and iteration all
into a single control structure.

Issuing the svn st command returns a list of files. The switch statement will iterate over
them line by line, and the –regex parameter lets us specify a regular expression in the
branching. Each iteration will tally the accumulators $other, $added, and $modified,
which are ultimately displayed as the prompt shown in Figure A-3.

function prompt {
 $host.ui.rawui.WindowTitle = $(Get-Location)

 if(Test-Path .svn) {
 switch -regex (svn st) {
 "^\?" {$other+=1}
 "^A" {$added+=1}
 "^M" {$modified+=1}
 default {}
 }

 $prompt_string = "SVN o:$other a:$added m:$modified >"
 } else {
 $prompt_string = "PS >"
 }

 Write-Host ($prompt_string) -NoNewline -ForegroundColor yellow

 return " "
}

Google “powershell prompt” and you’ll get hits on how creative people
have gotten with this. Here are two examples that take the Subversion
approach, connecting the PowerShell prompt to a version control
system:

• “A Mercurial PowerShell Prompt” (http://bit.ly/c1OGJa)

• “Better Git with PowerShell” (http://bit.ly/vmQ1y3)

Figure A-3. SVN PowerShell prompt

186 | Appendix A: Productive PowerShell

http://bit.ly/c1OGJa
http://bit.ly/vmQ1y3

Faster, Faster—The Light Is Turning Red
As in any language, in PowerShell there are ways to shuffle the code to get more per-
formance. For example, I found a great performance boost when I was porting some
spell-correction Python code posted by Peter Norvig, director of research at Google
(http://bit.ly/I7YEJ3).

This technique uses a training text file that contains about 5,500 lines and 100,000
words. The PowerShell script reads the file, splitting up the lines, capturing the indi-
vidual words, and creating a container of unique words.

I’ll show you the first approach I came up with, SlowTrain, and then the faster improved
version, FastTrain. It’s good to see this in action so you can keep in mind that there
are alternate ways to structure your PowerShell scripts and get significant performance
increases.

SlowTrain
Let’s train a probability model, which is a fancy way of saying, “count how many times
each word occurs, using the function train.” We’ll extract the words and create an
index of unique words. We’ll use .NET regular expressions, and then add each word
as a key to a hash table. The result will be a container of unique words.

function SlowTrain($text) {

 $h = @{}
 [regex]::split($text.ToLower(), '\W+') |
 ForEach {
 $h[$_] =''
 }
 $h
}

Here we’ll read the file, and then pass it to the trainer.

Read the file
$Text = [IO.File]::ReadAllText("$pwd\holmes.txt")

Create the unique words
SlowTrain $Text

Calling SlowTrain will take a little more than three seconds to return. Next up, we’ll
rework this SlowTrain into FastTrain and go from a three-second response time to
subsecond.

FastTrain
With FastTrain, you will see that the following code produces a subsecond response
time:

Faster, Faster—The Light Is Turning Red | 187

http://bit.ly/I7YEJ3

function FastTrain($text) {

 $h = @{}
 ForEach ($word in [regex]::split($text.ToLower(), '\W+'))
 {
 $h[$word] = ''
 }
 $h
}

We reworked the code by using the ForEach statement, resulting in processing that’s
six times faster.

ForEach-Object Versus ForEach Statement
There is the reason SlowTrain is slow: it uses the ForEach-Object. We piped the results
of the [regex] to it, and that is a bottleneck for this type of application. Switching to
the ForEach statement solves the problem. For more information, check out my blog
post “PowerShell—Four For Loops and their timings,” at http://bit.ly/nTNMG6.

Summary
PowerShell is an interpreted, dynamic language, and there are performance consider-
ations to think about when applying it. The great news is that, because it is built
on .NET, there are far fewer roadblocks to delivering a broad range of solutions to
multiple users.

PowerShell optimizes the person, not the CPU.

I hope this spectrum of examples illustrates PowerShell’s reach. This list is very short,
so I encourage you to use your preferred search engine to seek out how broad and deep
the PowerShell community is and what it is sharing.

Whether you’re connecting remotely, building spell checkers, or launching browsers
or other applications, remember: if you repeat it, PowerShell it.

188 | Appendix A: Productive PowerShell

http://bit.ly/nTNMG6

APPENDIX B

Running PowerShell with the .NET 4.0
Runtime

Here are the steps for configuring PowerShell v2 to run with the .NET 4.0 runtime.
(This StackOverflow link has more information: http://bit.ly/GB6gEe.)

PS C:\> cd $PSHOME
PS C:\Windows\System32\WindowsPowerShell\v1.0>
 notepad .\powershell.exe.config

Add this XML and save the file:

<?xml version="1.0"?>
<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0.30319"/>
 <supportedRuntime version="v2.0.50727"/>
 </startup>
</configuration>

Restart the PowerShell console, and then type $PSVersionTable. You should see the
following entry:

Name Value
---- -----
CLRVersion 4.0.30319.239

189

http://bit.ly/GB6gEe

About the Author
Doug Finke, a Microsoft Most Valuable Professional (MVP) for PowerShell, is a
software developer at Lab49, a company that builds advanced applications for the fi-
nancial service industry. For the last 20 years, Doug has been a developer and author
working with numerous technologies. You can catch up with Doug at his blog Devel-
opment in a Blink at http://dougfinke.com/blog/.

http://dougfinke.com/blog/

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Available for Download

	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	And Now, the Small Village of Folks Who Helped, Inspired, and Supported Me

	Chapter 1. Introduction
	This Is Just the Beginning
	Why Use PowerShell
	There’s a New Game in Town
	An Underutilized Development Tool

	Chapter 2. Getting Started
	Installing PowerShell
	Checking the PowerShell Version

	Interactivity, the Key to PowerShell
	Running a PowerShell Script
	Changing the Execution Policy from the Command Line
	RemoteSigned is good for you
	Running scripts with the execution policy set to Restricted
	Now we’re set to run a script

	PowerShell ISE
	Other PowerShell Editors
	PowerShell and Visual Studio
	The PowerShell Community
	The Future of PowerShell on Windows 8
	Summary

	Chapter 3. The Dime Tour
	The Object Pipeline: The Game Changer
	Automation References
	Semicolons
	Return Statements
	Datatypes
	Exception Handling
	Break
	Continue
	Try/Catch/Finally

	Quoting Rules
	PowerShell Subexpressions in Strings
	Here-Strings
	Great Code Generation Techniques
	C# Code

	Closures, Functions, and Lambdas
	Scriptblocks, Dynamic Languages, and Design Patterns

	Arrays
	Creating an Empty Array
	Adding an Array Item
	Retrieving an Element from an Array
	Array Slicing
	Finding Array Elements
	Reversing an Array
	Assigning Values to Multiple Variables in an Array

	Parentheses and Commas
	Hash Tables
	Creating an Empty Hash Table
	Adding a Hash Table Item
	Initializing a Hash Table with Items
	Concatenating Hash Tables

	Get-Member
	Filtering with Get-Member
	Using Get-Member with Collections

	Inject a GUI into the PowerShell Command Line
	New-Object
	Launching Internet Explorer
	Creating a New PowerShell Object
	PowerShell v3 is more pithy

	Using the .NET Framework

	Add-Member
	Add-Type
	Compiling C# on the Fly
	Newing Up the Class
	Calling the Add Method on MyMathClass
	Wait, I Don’t Have the Source

	“What Does % Do?” and Other Aliases
	Modules
	Summary

	Chapter 4. Accelerating Delivery
	Scanning for const Definitions
	Reading a Single C# File
	Using Select-String

	Reading C# Files in a Directory

	Working with Template Engines
	The Engine
	A Single Variable
	Multiple Variables
	Multiple Templates
	Complex Logic
	UML Style Syntax
	Reading XML
	Bonus Round

	Generating PowerShell Functions from C# Methods
	Get Parameters
	Pulling It All Together

	Calling PowerShell Functions from C#
	Overriding C# Methods with PowerShell Functions
	The Breakdown
	Looking for PowerShell Functions
	Extracting Metadata and Generating C#
	The PowerShell Module
	Testing It All

	Summary

	Chapter 5. Add PowerShell to Your GUI
	Embedding PowerShell in your C# Application
	Beaver Music Application
	PowerShell Console
	Foundational Functions
	New-Album
	Add-Album
	Import-Csv
	Get-Album and Clear-Album

	Managing Applications Better with PowerShell
	Importing Albums from the Web
	Function Get-AlbumFromWeb
	PowerShell v3
	Out-GridView
	Export-ToExcel

	Interacting with MEF
	Discovering the executable commands
	Show-NewAlbumDialog

	Implementing Performance Counters
	Get-PrivateBytes
	Get-YahooMusic

	Wiring a Textbox to Execute PowerShell Code
	Working in the PreviewKeyDown
	Running Script and Debugging the C#

	Getting the PowerShell Console in Your App
	PSConfig.Profile
	PSConfig.AddVariable
	The PowerShell Console Code
	PS.cs
	PSConfig.cs

	Summary

	Chapter 6. PowerShell and the Internet
	Net.WebClient
	Wrapping Code in a PowerShell Function
	Reading CSV-Formatted Data from the Web

	Reading XML-Formatted Data from the Web
	The Structure of XML Data
	US Government Data Sources

	Invoke-RestMethod
	Detecting XML
	Detecting JSON

	PowerShell and The New York Times Semantic API
	Reading The New York Times, part 1
	Reading The New York Times, part 2

	New-WebServiceProxy
	Stock WebService
	Dig a Little Deeper

	Invoke-WebRequest
	PowerShell and Google
	The target HTML

	PowerShell and Bing
	PowerShell and the Twitter API

	Summary

	Chapter 7. Building GUI Applications in PowerShell
	Why a Chapter About GUIs?
	Answer: Two Lines of Code

	PowerShell and WinForms
	PowerShell, ShowUI, and the Twitter API
	A Twitter GUI Application
	The Code

	ShowUI Video Player
	Summary

	Chapter 8. DLLs, Types, Properties, Methods, and Microsoft Roslyn
	Sending Text to the Clipboard
	Transcoding C# to PowerShell
	First, the C#
	Intermediate PowerShell
	Results
	Converting JSON to PowerShell

	Microsoft’s Roslyn
	Microsoft Roslyn and PowerShell

	Using PowerShell to Display Visual Studio Detail
	Roslyn’s Document Methods
	PowerShell Roslyn Class Viewer
	How It Works at a High Level

	Summary

	Chapter 9. Writing Little Languages in PowerShell
	Adding a New Construct to PowerShell
	PowerShell: A Better XML
	But Wait—There’s More
	Building the New-ToDoList function
	Building the New-ToDoItem function
	Where to put this function?
	Invoking the script block
	The New-ToDoItem Body

	Putting It All Together

	The Little Language in Action
	Is It Worth Creating Your Own Little Language?

	Graphviz
	Graphviz “Hello World”
	Hello World Visual
	A PowerShell DSL as a façade to GraphViz
	Building Add-Edge
	Building New-Graph
	Emitting output from New-Graph

	Mix and Match PowerShell and GraphViz
	Kick It Up a Notch: New-Graph Is an Internal DSL
	Graphing the Companies from Get-Process

	Summary

	Chapter 10. PowerShell, COM, and More
	Opening a File in Excel Using Invoke-Item
	Working Invoke-Item into a PowerShell Script

	Calling an Excel Function
	Creating an Excel COM Instance

	Discovering Available Excel Functions
	Calling More Excel Functions

	Automating Excel from PowerShell
	Making Excel Visible
	Creating a Workbook and Worksheets
	Putting the Date in a Cell in an Excel Worksheet from PowerShell
	Setting Up Pivot Tables in Excel
	Building an Excel Pivot Table in PowerShell

	Discovering Other COM Applications to Automate
	Automating Internet Explorer as a COM Application

	Summary

	Chapter 11. PowerShell Version 3
	PowerShell Workflows
	PowerShell Script-Based Workflow
	Running the Workflow
	Running the Workflow on Other Boxes
	Discovering More About Your Workflow
	Visual Studio Workflow
	Import-Module on a XAML workflow
	Getting performance counters in parallel
	Why workflows rock

	Using PowerShell with Web Data: Converting to and from JSON
	Converting JSON to PowerShell Objects and Back Again
	What If a Web/REST Service Returns JSON?

	Creating an Instance of a Microsoft .NET Framework Object
	Get-Content –Tail
	ISE v3
	Out-GridView and the -PassThru Parameter
	Scheduling Jobs
	Invoke-WebRequest and Invoke-RestMethod
	PowerShell v3 Items That Are a Must-See
	Show-Command
	Less Typing for ForEach and Where
	Execute PowerShell Commands from the Web
	Windows PowerShell Management ODATA IIS Extensions

	Summary

	Appendix A. Productive PowerShell
	Getting Automation Approved
	Saving Time with Automation
	Adding Aliases to Your PowerShell Profile
	Adding Variables and Functions to Your PowerShell Profile
	The ql Function
	Adding Variables to $Profile
	Adding Custom PowerShell Functions
	Quick Access to Launching Visual Studio Solutions

	Remote Desktop Connection
	Starting Another PowerShell Session
	Start-Process Can Do More

	Using PowerShell’s Tokenizer
	PowerShell and Older Tools
	Subversion
	Displaying SVN info on your PowerShell prompt
	The script

	Faster, Faster—The Light Is Turning Red
	SlowTrain
	FastTrain
	ForEach-Object Versus ForEach Statement

	Summary

	Appendix B. Running PowerShell with the .NET 4.0 Runtime

